Abstract

It has been shown that an anisotropic metamaterial made of nanowire array can realize negative refraction of light even without a negative phase index of refraction. Such non-resonant bulk material can be fabricated by bottom-up electrochemical method. Using this material, we were able to achieve lensing action with micron-thick slab and demonstrate imaging of a slit object. The details of the focused light beam in 3-dimensional space have been mapped with near field scanning optical microscope (NSOM).

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004) (and the references therein.).
    [CrossRef] [PubMed]
  2. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B 23(3), 498–505 (2006).
    [CrossRef]
  3. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
    [CrossRef]
  4. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [CrossRef] [PubMed]
  5. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
    [CrossRef] [PubMed]
  6. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [CrossRef] [PubMed]
  7. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
    [CrossRef] [PubMed]
  8. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [CrossRef] [PubMed]
  9. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
    [CrossRef] [PubMed]
  10. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
    [CrossRef] [PubMed]
  11. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  12. M. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98(17), 177404 (2007).
    [CrossRef]
  13. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [CrossRef] [PubMed]
  14. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  15. C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nano-channels on Focused-Ion-beam Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78(1), 120–122 (2001).
    [CrossRef]
  16. G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
    [CrossRef]
  17. G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit,” J. Chem. Phys. B 101(9), 1548–1555 (1997).
    [CrossRef]
  18. K. H. A. Lau, L. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Chem. Phys. B 108(30), 10812–10818 (2004).
    [CrossRef]
  19. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  20. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98(11), 2963–2971 (1994).
    [CrossRef]
  21. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  22. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [CrossRef] [PubMed]

2008

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

2007

M. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98(17), 177404 (2007).
[CrossRef]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

2006

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B 23(3), 498–505 (2006).
[CrossRef]

G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
[CrossRef]

2005

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2004

K. H. A. Lau, L. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Chem. Phys. B 108(30), 10812–10818 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004) (and the references therein.).
[CrossRef] [PubMed]

2003

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

2001

C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nano-channels on Focused-Ion-beam Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78(1), 120–122 (2001).
[CrossRef]

1997

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit,” J. Chem. Phys. B 101(9), 1548–1555 (1997).
[CrossRef]

1994

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98(11), 2963–2971 (1994).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Belov, P. A.

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Cai, W. S.

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cortes, A.

G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
[CrossRef]

Dalchiele, E. A.

G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
[CrossRef]

Datta, A.

C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nano-channels on Focused-Ion-beam Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78(1), 120–122 (2001).
[CrossRef]

Dolling, G.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Drachev, V. P.

Elser, J.

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Foss, C. A.

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98(11), 2963–2971 (1994).
[CrossRef]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Gómez, H.

G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
[CrossRef]

Green, S.

G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Hornyak, G. L.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit,” J. Chem. Phys. B 101(9), 1548–1555 (1997).
[CrossRef]

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98(11), 2963–2971 (1994).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Kildishev, A. V.

Knoll, W.

K. H. A. Lau, L. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Chem. Phys. B 108(30), 10812–10818 (2004).
[CrossRef]

Lau, K. H. A.

K. H. A. Lau, L. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Chem. Phys. B 108(30), 10812–10818 (2004).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Linden, S.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Liu, C. Y.

C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nano-channels on Focused-Ion-beam Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78(1), 120–122 (2001).
[CrossRef]

Liu, Y.

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Marotti, R. E.

G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
[CrossRef]

Martin, C. R.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit,” J. Chem. Phys. B 101(9), 1548–1555 (1997).
[CrossRef]

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98(11), 2963–2971 (1994).
[CrossRef]

Narimanov, E. E.

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Patrissi, C. J.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit,” J. Chem. Phys. B 101(9), 1548–1555 (1997).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004) (and the references therein.).
[CrossRef] [PubMed]

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Podolskiy, V. A.

Riveros, G.

G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
[CrossRef]

Sander, M. S.

K. H. A. Lau, L. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Chem. Phys. B 108(30), 10812–10818 (2004).
[CrossRef]

Sarychev, A. K.

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

Shalaev, V. M.

Silveirinha, M. G.

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

Simovski, C. R.

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004) (and the references therein.).
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

Soukoulis, C. M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Stockert, J. A.

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98(11), 2963–2971 (1994).
[CrossRef]

Stockman, M.

M. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98(17), 177404 (2007).
[CrossRef]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tamada, K.

K. H. A. Lau, L. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Chem. Phys. B 108(30), 10812–10818 (2004).
[CrossRef]

Tan, L.

K. H. A. Lau, L. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Chem. Phys. B 108(30), 10812–10818 (2004).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Wang, Y. L.

C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nano-channels on Focused-Ion-beam Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78(1), 120–122 (2001).
[CrossRef]

Wangberg, R.

Wegener, M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004) (and the references therein.).
[CrossRef] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Yuan, H. K.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nano-channels on Focused-Ion-beam Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78(1), 120–122 (2001).
[CrossRef]

J. Chem. Phys. B

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit,” J. Chem. Phys. B 101(9), 1548–1555 (1997).
[CrossRef]

K. H. A. Lau, L. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly Sensitive Detection of Processes Occurring Inside Nanoporous Anodic Alumina Templates: A Waveguide Optical Study,” J. Chem. Phys. B 108(30), 10812–10818 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98(11), 2963–2971 (1994).
[CrossRef]

Nanotechnology

G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, and E. A. Dalchiele, “Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates,” Nanotechnology 17(2), 561–570 (2006).
[CrossRef]

Nature

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

M. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98(17), 177404 (2007).
[CrossRef]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Science

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004) (and the references therein.).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) The equifrequency contour (EFC) for a TM-polarized light is hyperbolic in the k x, k z plane, assuming the light propagation is centered along the wire (the z-axis). The grey circle is the EFC in air. The tangential component along the metamaterial/air interface is conserved. The direction change from the Poynting vector Si to Sr shows the negative refraction. (b) Schematic picture showing the principle of imaging by a slab lens made of metamatierial with negative refraction ability. (c) Scanning electron microscope (SEM) image of the slab lens (top view). The center to center distance between nanowires is about 110nm in average.

Fig. 2
Fig. 2

Schematic of the optical set up. The sample was illuminated with a He-Ne laser at 633nm. The polarization of the incident light can be selected by a linear polarizer P. A flip mirror FM is used to enable the observation of the sample surface using CCD camera through the microscope objective lens O. The transmitted light was mapped by NSOM in various distances from the output surface, using a tapered optical fiber coated with chromium as the NSOM tip. The SEM image of the tip is shown in the up-left inset. A xyz AFM scanner was used to control the tip position so light in any point of interest in the 3D free space can be detected. The collected light is transmitted to a photo detector PMT through fiber coupler FC.

Fig. 3
Fig. 3

Cross sectional view of the light profile in the xz plane which is perpendicular to the slit. y-axis is parallel to the slit. Incident light is propagating in z direction. (a) Focusing of TM polarized light. The light distribution in the space has been recovered by combining all the optical signals obtained by NSOM in each point at different heights. The noise level is higher than for TE wave due to higher loss and less transmission of TM wave comparing to TE wave. (b) NSOM measurement result of TE polarized light. The beam diverges after passing through the slab lens. No focusing effect is observed. The interference fringes are different from the simulation result due to the limitation of sample quality, NSOM resolution and sensitivity. (c)(d) Numerical simulation results for TM (c) and TE (d) polarized light in the cross sectional plane using commercial software (CST Microwave Studio). The lower part of (c) and (d) is the slab lens, where the nanowire array is shown. The upper part is air. The colors from blue to red in the simulation results represent increasing amplitude of electric component of the waves. The inset shows the cross cuts of the normalized intensity distribution at the focus point (Blue –experiment, Red - simulation). The unit of the horizontal axis is micrometer. (a), (b), (c) and (d) have the same scale bar.

Metrics