Abstract

The preservation of carrier envelope phase (CEP) during Cross-Polarized Wave Generation (XPWG) is demonstrated through two independent experiments based on the spatially and spectrally resolved interference fringes formed by the XPW beam and its fundamental. In a first measurement, we found that the vertical fringe position on the spatial detector was maintained over many consecutive laser shots, implying practically no change in relative CEP between the XPW and the fundamental. In a second experiment, we measured the change in relative CEP between the XPW and fundamental beam by systematically varying the amount of material dispersion inside the XPW arm of the interferometer. The recorded rate of relative phase change was in excellent agreement with the theoretical value.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 (2006).
    [CrossRef]
  2. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
    [CrossRef] [PubMed]
  3. A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
    [CrossRef]
  4. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
    [CrossRef] [PubMed]
  5. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31(10), 1456–1458 (2006).
    [CrossRef] [PubMed]
  6. L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
    [CrossRef]
  7. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
    [CrossRef]
  8. A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
    [CrossRef]
  9. L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
    [CrossRef]
  10. L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
    [CrossRef]
  11. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipöcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20(7), 788–790 (1995).
    [CrossRef] [PubMed]
  12. C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 (1990).
    [CrossRef]
  13. D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 (1997).
    [CrossRef]
  14. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
    [CrossRef] [PubMed]
  15. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 (2008).
    [CrossRef]
  16. K. Osvay, A. Börzsönyi, Zs. Heiner, and M. P. Kalashnikov, “Measurement of Pressure Dependent Nonlinear Refractive Index of Inert Gases,” CLEO 2009, Baltimore, USA, paper CMU7.
  17. D. E. Adams, T. A. Planchon, J. A. Squier, and C. G. Durfee, “Spatio-Temporal Characterization of Nonlinear Propagation of Femtosecond Pulses,” CLEO 2009, Baltimore, USA, paper CThDD5.
  18. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 (1997).
    [CrossRef]
  19. B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt . 7, 249–254 (2005) 249.
    [CrossRef]
  20. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006).
    [CrossRef] [PubMed]
  21. K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, “Bandwidth-independent linear method for detection of the carrier-envelope offset phase,” Opt. Lett. 32(21), 3095–3097 (2007).
    [CrossRef] [PubMed]
  22. F. X. Kaertner, ed., “Few-cycle laser pulses and its applications,” Topics in Applied Physics, Vol. 95, Springer, Berlin, 2004.
  23. A. Trisorio, L. Canova, and R. Lopez Martens, “Hybrid Prism/Chirped Mirror Compressor for Multi-mJ, kHz, Sub-30 fs”, CEP Stabilized Ti:Sa Laser,” CLEO 2008, San José, USA, paper JWA60.
  24. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [CrossRef]
  25. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 (2005).
    [CrossRef] [PubMed]
  26. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
    [CrossRef] [PubMed]

2009 (2)

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
[CrossRef]

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
[CrossRef] [PubMed]

2008 (4)

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
[CrossRef] [PubMed]

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 (2008).
[CrossRef]

2007 (2)

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, “Bandwidth-independent linear method for detection of the carrier-envelope offset phase,” Opt. Lett. 32(21), 3095–3097 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

2004 (1)

2003 (1)

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

2001 (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

1997 (2)

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 (1997).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 (1997).
[CrossRef]

1995 (1)

1990 (1)

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 (1990).
[CrossRef]

1965 (1)

Akturk, S.

Albert, O.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
[CrossRef] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
[CrossRef]

Antonucci, L.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

Augé-Rochereau, F.

Baltuska, A.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

Bor, Z.

Börzsönyi, A.

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 (2008).
[CrossRef]

A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
[CrossRef] [PubMed]

Boschetto, D.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

Bowlan, P.

Burgy, F.

Calatroni, J. E.

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 (1990).
[CrossRef]

Canova, L.

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

Cha, Y. H.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

Chambaret, J.-P.

Chaudet, P.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

Cheriaux, G.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

Chériaux, G.

Chvykov, V.

Eidmann, K.

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

Ell, R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Etchepare, J.

Forget, N.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

Fujimoto, J. G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Gabolde, P.

Görbe, M.

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 (2008).
[CrossRef]

K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, “Bandwidth-independent linear method for detection of the carrier-envelope offset phase,” Opt. Lett. 32(21), 3095–3097 (2007).
[CrossRef] [PubMed]

Goulielmakis, E.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

Grebing, C.

Hamoniaux, G.

Hänsch, T. W.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

Haus, H. A.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Heiner, Z.

Herrmann, D.

Ippen, E. P.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Jullien, A.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
[CrossRef] [PubMed]

Kalashnikov, M. P.

Kalinchenko, G.

Kärtner, F. X.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Kienberger, R.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

Kourtev, S.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

Kovács, A. P.

Krausz, F.

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
[CrossRef] [PubMed]

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

Laude, V.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
[CrossRef]

Lopez-Martens, R.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

Malitson, I. H.

McGresham, K.

Mercier, B.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
[CrossRef]

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

Meshulach, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 (1997).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 (1997).
[CrossRef]

Metzler, G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Meyer-Ter-Vehn, J.

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

Minkovski, N.

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
[CrossRef] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
[CrossRef]

Morgner, U.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Osvay, K.

Pervak, V.

Petrov, G. I.

Reed, S.

Risse, E.

Rousseau, J. P.

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

Rousseau, J.-P.

Rousseau, P.

Sainz, C.

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 (1990).
[CrossRef]

Saltiel, S. M.

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
[CrossRef] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
[CrossRef]

Sandner, W.

Schibli, T. R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Schmid, K.

Schönnagel, H.

Shreenath, A.

Siberberg, Y.

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 (1997).
[CrossRef]

Silberberg, Y.

Steinmeyer, G.

Szipöcs, R.

Tautz, R.

Tavella, F.

Trebino, R.

Tribillon, G.

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 (1990).
[CrossRef]

Tsakiris, G. D.

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

Udem, T.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

Uiberacker, M.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

Veisz, L.

Yakovlev, V. S.

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

Yanovsky, V.

Yelin, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 (1997).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[CrossRef]

L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 (1990).
[CrossRef]

N. J. Phys. (1)

G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

Opt. Commun. (2)

L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009).
[CrossRef]

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[CrossRef] [PubMed]

Other (5)

K. Osvay, A. Börzsönyi, Zs. Heiner, and M. P. Kalashnikov, “Measurement of Pressure Dependent Nonlinear Refractive Index of Inert Gases,” CLEO 2009, Baltimore, USA, paper CMU7.

D. E. Adams, T. A. Planchon, J. A. Squier, and C. G. Durfee, “Spatio-Temporal Characterization of Nonlinear Propagation of Femtosecond Pulses,” CLEO 2009, Baltimore, USA, paper CThDD5.

B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt . 7, 249–254 (2005) 249.
[CrossRef]

F. X. Kaertner, ed., “Few-cycle laser pulses and its applications,” Topics in Applied Physics, Vol. 95, Springer, Berlin, 2004.

A. Trisorio, L. Canova, and R. Lopez Martens, “Hybrid Prism/Chirped Mirror Compressor for Multi-mJ, kHz, Sub-30 fs”, CEP Stabilized Ti:Sa Laser,” CLEO 2008, San José, USA, paper JWA60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A spectrally and spatially resolved interferometer (a) and the formation of spectrally and spatially resolved interference fringes (b). The phase-shifting element in the sample arm represents the relative phase difference between the sample and reference pulses.

Fig. 2
Fig. 2

Experimental setup. The XPW pulses interfere with the fundamental beam and the interference pattern is resolved spectrally.

Fig. 3
Fig. 3

Spatial cross section of the fringes at three different wavelengths as a function of exposure time of the CCD camera. For each exposure time the corresponding slice of nine independent interferograms is displayed.

Fig. 4
Fig. 4

Averaged visibility map of interference fringes captured with an exposition time of 1 ms (a), 10 ms (b), 100 ms (c) and 1 s (d), respectively. The corresponding averaged visibility is 0.883, 0.867, 0.939 and 0.823.

Fig. 5
Fig. 5

Spatial cross section of the fringes at three different wavelengths as a function of wedge position. At each wedge position one slice of the first interferogram of each series is displayed.

Fig. 6
Fig. 6

Change of group delay (a) and the initial phase of the XPW pulses (b) as a function of the fused silica wedge position.

Fig. 7
Fig. 7

Change of total phase of the generated XPW pulses relative to the fundamental ones as a function of position of the fused silica wedge.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ i ( ω ) = ϕ i ( ω 0 ) + d ϕ i d ω | ω 0 ( ω ω 0 ) + 1 2 d 2 ϕ i d ω 2 | ω 0 ( ω ω 0 ) 2 + ...       ,             i = R , S     .
I ( y , ω ) = I S ( ω ) + I R ( ω ) + 2 I S ( ω ) · I R ( ω ) cos ( Δ ϕ ( ω ) + ε ω c ( y y 0 ) ) ,
Δ ϕ ( ω ) = ϕ R ( ω ) ϕ S ( ω ) = Δ ϕ ( ω 0 ) + d Δ ϕ d ω | ω 0 ( ω ω 0 ) + 1 2 d 2 Δ ϕ d ω 2 | ω 0 ( ω ω 0 ) 2 + ... ,
Δ ϕ ( ω ) = Δ ϕ C E + D ( ω ) ,

Metrics