Abstract

We map a nanoindent in a silicon carbide (SiC) crystal by infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) and confocal Raman microscopy and interpret the resulting images in terms of local residual stress-fields. By comparing near-field IR and confocal Raman images, we find that the stress-induced shifts of the longitudinal optical phonon-frequencies (LO) and the related shift of the phonon-polariton near-field resonance give rise to Raman and s-SNOM image contrasts, respectively. We apply single-frequency IR s-SNOM for nanoscale resolved imaging of local stress-fields and confocal Raman microscopy to obtain the complete spectral information about stress-induced shifts of the phonon frequencies at diffraction limited spatial resolution. The spatial extension of the local stress-field around the nanoindent agrees well between both techniques. Our results demonstrate that both methods ideally complement each other, allowing for the detailed analysis of stress-fields at e.g. material and grain boundaries, in Micro-Electro-Mechanical-Systems (MEMS), or in engineered nanostructures.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
    [CrossRef]
  2. I. Neizvestnyi and V. Gridchin, “The use of stressed silicon in MOS transistors and CMOS structures,” Russ. Microelectron. 38(2), 71–86 (2009).
    [CrossRef]
  3. J. Baliga, Silicon Carbide Power Devices (World Scientific, Singapore, 2005).
  4. H. Harima, T. Hosoda, and S. Nakashima, “Temperature measurement in a silicon carbide light emitting diode by Raman scattering,” J. Electron. Mater. 28(3), 141–143 (1999).
    [CrossRef]
  5. A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity,” Ultramicroscopy 106(4-5), 307–313 (2006).
    [CrossRef] [PubMed]
  6. A. J. Wilkinson, G. Meaden, and D. J. Dingley, “Mapping strains at the nanoscale using electron back scatter diffraction,” Superlattices Microstruct. 45(4-5), 285–294 (2009).
    [CrossRef]
  7. M. Bauer, A. M. Gigler, A. J. Huber, R. Hillenbrand, and R. W. Stark, “Temperature depending Raman line-shift in silicon carbide,” J. Raman Spectrosc. (to be published)), doi:.
    [CrossRef] [PubMed]
  8. M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
    [CrossRef]
  9. T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
    [CrossRef] [PubMed]
  10. D. Olego, M. Cardona, and P. Vogl, “Pressure-Dependence of the Optical Phonons and Transverse Effective Charge in 3C-SiC,” Phys. Rev. B 25(6), 3878–3888 (1982).
    [CrossRef]
  11. H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005).
    [CrossRef] [PubMed]
  12. A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results,” Phys. Rev. B 59(10), 6774–6783 (1999).
    [CrossRef]
  13. T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
    [CrossRef] [PubMed]
  14. J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
    [CrossRef]
  15. S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162(1), 39–64 (1997).
    [CrossRef]
  16. K. Mizoguchi and S. Nakashima, “Determination of Crystallographic Orientations in Silicon Films by Raman-Microprobe Polarization Measurements,” J. Appl. Phys. 65(7), 2583–2590 (1989).
    [CrossRef]
  17. I. DeWolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
    [CrossRef]
  18. S. M. Hu, “Stress-Related Problems in Silicon Technology,” J. Appl. Phys. 70(6), R53–R80 (1991).
    [CrossRef]
  19. B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
    [CrossRef]
  20. J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond,” Phys. Rev. Lett. 72(26), 4105–4108 (1994).
    [CrossRef] [PubMed]
  21. J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures - Reply,” Phys. Rev. Lett. 77, 1661 (1996).
    [CrossRef] [PubMed]
  22. L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
    [CrossRef]
  23. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
    [CrossRef] [PubMed]
  24. D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
    [CrossRef]
  25. T. Deckert-Gaudig, F. Erver, and V. Deckert, “Transparent silver microcrystals: synthesis and application for nanoscale analysis,” Langmuir 25(11), 6032–6034 (2009).
    [CrossRef] [PubMed]
  26. T. Deckert-Gaudig, E. Bailo, and V. Deckert, “Perspectives for spatially resolved molecular spectroscopy - Raman on the nanometer scale,” J. Biophoton. 1(5), 377–389 (2008).
    [CrossRef]
  27. N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
    [CrossRef]
  28. A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Rev. Sci. Instrum. 79(1), 013706 (2008).
    [CrossRef] [PubMed]
  29. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
    [CrossRef]
  30. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
    [CrossRef] [PubMed]
  31. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
    [CrossRef] [PubMed]
  32. A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
    [CrossRef] [PubMed]
  33. N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
    [CrossRef] [PubMed]
  34. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
    [CrossRef] [PubMed]
  35. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
    [CrossRef]
  36. U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006).
    [CrossRef]
  37. T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
    [CrossRef]
  38. G. D. Quinn and R. C. Bradt, “On the Vickers indentation fracture toughness test,” J. Am. Ceram. Soc. 90(3), 673–680 (2007).
    [CrossRef]
  39. M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J. Appl. Phys. 101(6), 063531 (2007).
    [CrossRef]

2009

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “Mapping strains at the nanoscale using electron back scatter diffraction,” Superlattices Microstruct. 45(4-5), 285–294 (2009).
[CrossRef]

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

I. Neizvestnyi and V. Gridchin, “The use of stressed silicon in MOS transistors and CMOS structures,” Russ. Microelectron. 38(2), 71–86 (2009).
[CrossRef]

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

T. Deckert-Gaudig, F. Erver, and V. Deckert, “Transparent silver microcrystals: synthesis and application for nanoscale analysis,” Langmuir 25(11), 6032–6034 (2009).
[CrossRef] [PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

2008

A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Rev. Sci. Instrum. 79(1), 013706 (2008).
[CrossRef] [PubMed]

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

T. Deckert-Gaudig, E. Bailo, and V. Deckert, “Perspectives for spatially resolved molecular spectroscopy - Raman on the nanometer scale,” J. Biophoton. 1(5), 377–389 (2008).
[CrossRef]

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

2007

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[CrossRef]

G. D. Quinn and R. C. Bradt, “On the Vickers indentation fracture toughness test,” J. Am. Ceram. Soc. 90(3), 673–680 (2007).
[CrossRef]

M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J. Appl. Phys. 101(6), 063531 (2007).
[CrossRef]

2006

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006).
[CrossRef]

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity,” Ultramicroscopy 106(4-5), 307–313 (2006).
[CrossRef] [PubMed]

2005

H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005).
[CrossRef] [PubMed]

2004

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[CrossRef] [PubMed]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
[CrossRef]

2003

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

2002

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

1999

A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results,” Phys. Rev. B 59(10), 6774–6783 (1999).
[CrossRef]

H. Harima, T. Hosoda, and S. Nakashima, “Temperature measurement in a silicon carbide light emitting diode by Raman scattering,” J. Electron. Mater. 28(3), 141–143 (1999).
[CrossRef]

1998

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

1997

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162(1), 39–64 (1997).
[CrossRef]

1996

I. DeWolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[CrossRef]

J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures - Reply,” Phys. Rev. Lett. 77, 1661 (1996).
[CrossRef] [PubMed]

1994

J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond,” Phys. Rev. Lett. 72(26), 4105–4108 (1994).
[CrossRef] [PubMed]

1991

S. M. Hu, “Stress-Related Problems in Silicon Technology,” J. Appl. Phys. 70(6), R53–R80 (1991).
[CrossRef]

1989

K. Mizoguchi and S. Nakashima, “Determination of Crystallographic Orientations in Silicon Films by Raman-Microprobe Polarization Measurements,” J. Appl. Phys. 65(7), 2583–2590 (1989).
[CrossRef]

1982

D. Olego, M. Cardona, and P. Vogl, “Pressure-Dependence of the Optical Phonons and Transverse Effective Charge in 3C-SiC,” Phys. Rev. B 25(6), 3878–3888 (1982).
[CrossRef]

Archer, L.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

Bailo, E.

T. Deckert-Gaudig, E. Bailo, and V. Deckert, “Perspectives for spatially resolved molecular spectroscopy - Raman on the nanometer scale,” J. Biophoton. 1(5), 377–389 (2008).
[CrossRef]

Baribeau, J. M.

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

Bauer, M.

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

M. Bauer, A. M. Gigler, A. J. Huber, R. Hillenbrand, and R. W. Stark, “Temperature depending Raman line-shift in silicon carbide,” J. Raman Spectrosc. (to be published)), doi:.
[CrossRef] [PubMed]

Becker, M.

M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J. Appl. Phys. 101(6), 063531 (2007).
[CrossRef]

Beechem, T.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Bensch, W.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

Borgia, C.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[CrossRef]

Bradt, R. C.

G. D. Quinn and R. C. Bradt, “On the Vickers indentation fracture toughness test,” J. Am. Ceram. Soc. 90(3), 673–680 (2007).
[CrossRef]

Budich, C.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

Burton, J. C.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

Cançado, L. G.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

Cardona, M.

A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results,” Phys. Rev. B 59(10), 6774–6783 (1999).
[CrossRef]

D. Olego, M. Cardona, and P. Vogl, “Pressure-Dependence of the Optical Phonons and Transverse Effective Charge in 3C-SiC,” Phys. Rev. B 25(6), 3878–3888 (1982).
[CrossRef]

Cebula, M.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Christiansen, S.

M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J. Appl. Phys. 101(6), 063531 (2007).
[CrossRef]

Cialla, D.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

Dalmer, M.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

Daymond, M.

H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005).
[CrossRef] [PubMed]

Debernardi, A.

A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results,” Phys. Rev. B 59(10), 6774–6783 (1999).
[CrossRef]

Deckert, V.

T. Deckert-Gaudig, F. Erver, and V. Deckert, “Transparent silver microcrystals: synthesis and application for nanoscale analysis,” Langmuir 25(11), 6032–6034 (2009).
[CrossRef] [PubMed]

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

T. Deckert-Gaudig, E. Bailo, and V. Deckert, “Perspectives for spatially resolved molecular spectroscopy - Raman on the nanometer scale,” J. Biophoton. 1(5), 377–389 (2008).
[CrossRef]

Deckert-Gaudig, T.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

T. Deckert-Gaudig, F. Erver, and V. Deckert, “Transparent silver microcrystals: synthesis and application for nanoscale analysis,” Langmuir 25(11), 6032–6034 (2009).
[CrossRef] [PubMed]

T. Deckert-Gaudig, E. Bailo, and V. Deckert, “Perspectives for spatially resolved molecular spectroscopy - Raman on the nanometer scale,” J. Biophoton. 1(5), 377–389 (2008).
[CrossRef]

DeWolf, I.

I. DeWolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[CrossRef]

Dingley, D. J.

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “Mapping strains at the nanoscale using electron back scatter diffraction,” Superlattices Microstruct. 45(4-5), 285–294 (2009).
[CrossRef]

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity,” Ultramicroscopy 106(4-5), 307–313 (2006).
[CrossRef] [PubMed]

Duan, R. F.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Eng, L. M.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Erver, F.

T. Deckert-Gaudig, F. Erver, and V. Deckert, “Transparent silver microcrystals: synthesis and application for nanoscale analysis,” Langmuir 25(11), 6032–6034 (2009).
[CrossRef] [PubMed]

Feng, Z. C.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

Ferguson, I. T.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

Gaulhofer, E.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

Gigler, A. M.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

M. Bauer, A. M. Gigler, A. J. Huber, R. Hillenbrand, and R. W. Stark, “Temperature depending Raman line-shift in silicon carbide,” J. Raman Spectrosc. (to be published)), doi:.
[CrossRef] [PubMed]

Grafström, S.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Graham, S.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Grebel, H.

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

Gridchin, V.

I. Neizvestnyi and V. Gridchin, “The use of stressed silicon in MOS transistors and CMOS structures,” Russ. Microelectron. 38(2), 71–86 (2009).
[CrossRef]

Harima, H.

H. Harima, T. Hosoda, and S. Nakashima, “Temperature measurement in a silicon carbide light emitting diode by Raman scattering,” J. Electron. Mater. 28(3), 141–143 (1999).
[CrossRef]

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162(1), 39–64 (1997).
[CrossRef]

Härtling, T.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Hartschuh, A.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

Hayazawa, N.

A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Rev. Sci. Instrum. 79(1), 013706 (2008).
[CrossRef] [PubMed]

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

Helm, M.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Hillenbrand, R.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[CrossRef] [PubMed]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

M. Bauer, A. M. Gigler, A. J. Huber, R. Hillenbrand, and R. W. Stark, “Temperature depending Raman line-shift in silicon carbide,” J. Raman Spectrosc. (to be published)), doi:.
[CrossRef] [PubMed]

Hollricher, O.

U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006).
[CrossRef]

Honkimäki, V.

H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005).
[CrossRef] [PubMed]

Hosoda, T.

H. Harima, T. Hosoda, and S. Nakashima, “Temperature measurement in a silicon carbide light emitting diode by Raman scattering,” J. Electron. Mater. 28(3), 141–143 (1999).
[CrossRef]

Hu, Q.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Hu, S. M.

S. M. Hu, “Stress-Related Problems in Silicon Technology,” J. Appl. Phys. 70(6), R53–R80 (1991).
[CrossRef]

Huber, A.

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

Huber, A. J.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

M. Bauer, A. M. Gigler, A. J. Huber, R. Hillenbrand, and R. W. Stark, “Temperature depending Raman line-shift in silicon carbide,” J. Raman Spectrosc. (to be published)), doi:.
[CrossRef] [PubMed]

Ibach, W.

U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006).
[CrossRef]

Ichimura, T.

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

Ishitobi, H.

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

Kamenev, B. V.

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

Kamins, T. I.

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

Kawata, S.

A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Rev. Sci. Instrum. 79(1), 013706 (2008).
[CrossRef] [PubMed]

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

Kearney, S. P.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Kehr, S. C.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Keilmann, F.

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Köck, T.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Kruwinus, H.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

Laue, M.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

Lechner, A.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

Li, J. M.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Liu, J.

J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures - Reply,” Phys. Rev. Lett. 77, 1661 (1996).
[CrossRef] [PubMed]

J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond,” Phys. Rev. Lett. 72(26), 4105–4108 (1994).
[CrossRef] [PubMed]

Liu, Y. L.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Lockwood, D. J.

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

Long, F. H.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

Lukacs, S. J.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

Meaden, G.

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “Mapping strains at the nanoscale using electron back scatter diffraction,” Superlattices Microstruct. 45(4-5), 285–294 (2009).
[CrossRef]

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity,” Ultramicroscopy 106(4-5), 307–313 (2006).
[CrossRef] [PubMed]

Mieth, O.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Mizoguchi, K.

K. Mizoguchi and S. Nakashima, “Determination of Crystallographic Orientations in Silicon Films by Raman-Microprobe Polarization Measurements,” J. Appl. Phys. 65(7), 2583–2590 (1989).
[CrossRef]

Moller, R.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

Motohashi, M.

A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Rev. Sci. Instrum. 79(1), 013706 (2008).
[CrossRef] [PubMed]

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

Muller, J.

U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006).
[CrossRef]

Nakashima, S.

H. Harima, T. Hosoda, and S. Nakashima, “Temperature measurement in a silicon carbide light emitting diode by Raman scattering,” J. Electron. Mater. 28(3), 141–143 (1999).
[CrossRef]

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162(1), 39–64 (1997).
[CrossRef]

K. Mizoguchi and S. Nakashima, “Determination of Crystallographic Orientations in Silicon Films by Raman-Microprobe Polarization Measurements,” J. Appl. Phys. 65(7), 2583–2590 (1989).
[CrossRef]

Naumann, D.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

Neizvestnyi, I.

I. Neizvestnyi and V. Gridchin, “The use of stressed silicon in MOS transistors and CMOS structures,” Russ. Microelectron. 38(2), 71–86 (2009).
[CrossRef]

Neuefeind, J.

H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005).
[CrossRef] [PubMed]

Novotny, L.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

Ocelic, N.

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[CrossRef] [PubMed]

Olego, D.

D. Olego, M. Cardona, and P. Vogl, “Pressure-Dependence of the Optical Phonons and Transverse Effective Charge in 3C-SiC,” Phys. Rev. B 25(6), 3878–3888 (1982).
[CrossRef]

Ono, A.

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

Peter, D.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

Phinney, L. M.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Pophristic, M.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

Popp, J.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

Poulsen, H. F.

H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005).
[CrossRef] [PubMed]

Quinn, G. D.

G. D. Quinn and R. C. Bradt, “On the Vickers indentation fracture toughness test,” J. Am. Ceram. Soc. 90(3), 673–680 (2007).
[CrossRef]

Richter, C.

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

Saito, Y.

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

Sánchez, E. J.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

Scheel, H.

M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J. Appl. Phys. 101(6), 063531 (2007).
[CrossRef]

Schmidt, U.

U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006).
[CrossRef]

Seidel, J.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Serrano, J. R.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Solenthaler, C.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[CrossRef]

Spolenak, R.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[CrossRef]

Stark, R. W.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

M. Bauer, A. M. Gigler, A. J. Huber, R. Hillenbrand, and R. W. Stark, “Temperature depending Raman line-shift in silicon carbide,” J. Raman Spectrosc. (to be published)), doi:.
[CrossRef] [PubMed]

Stehr, D.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Strunk, H. P.

M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J. Appl. Phys. 101(6), 063531 (2007).
[CrossRef]

Sun, L.

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

Syassen, K.

A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results,” Phys. Rev. B 59(10), 6774–6783 (1999).
[CrossRef]

Tarun, A.

A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Rev. Sci. Instrum. 79(1), 013706 (2008).
[CrossRef] [PubMed]

Taubner, T.

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Tsybeskov, L.

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

Ulrich, C.

A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results,” Phys. Rev. B 59(10), 6774–6783 (1999).
[CrossRef]

Verma, P.

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

Vogl, P.

D. Olego, M. Cardona, and P. Vogl, “Pressure-Dependence of the Optical Phonons and Transverse Effective Charge in 3C-SiC,” Phys. Rev. B 25(6), 3878–3888 (1982).
[CrossRef]

Vohra, Y. K.

J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures - Reply,” Phys. Rev. Lett. 77, 1661 (1996).
[CrossRef] [PubMed]

J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond,” Phys. Rev. Lett. 72(26), 4105–4108 (1994).
[CrossRef] [PubMed]

Wang, J. X.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Wei, T. B.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Weishaupt, K.

U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006).
[CrossRef]

Wermelinger, T.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[CrossRef]

Wert, J. A.

H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005).
[CrossRef] [PubMed]

Wilkinson, A. J.

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “Mapping strains at the nanoscale using electron back scatter diffraction,” Superlattices Microstruct. 45(4-5), 285–294 (2009).
[CrossRef]

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity,” Ultramicroscopy 106(4-5), 307–313 (2006).
[CrossRef] [PubMed]

Williams, R. S.

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

Winnerl, S.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Xie, X. S.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

Yang, Y.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Zeng, Y. P.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Ziegler, A.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Acta Mater.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[CrossRef]

Appl. Phys. Lett.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003).
[CrossRef]

ECS Trans.

D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009).
[CrossRef]

J. Am. Ceram. Soc.

G. D. Quinn and R. C. Bradt, “On the Vickers indentation fracture toughness test,” J. Am. Ceram. Soc. 90(3), 673–680 (2007).
[CrossRef]

J. Appl. Phys.

M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J. Appl. Phys. 101(6), 063531 (2007).
[CrossRef]

J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[CrossRef]

K. Mizoguchi and S. Nakashima, “Determination of Crystallographic Orientations in Silicon Films by Raman-Microprobe Polarization Measurements,” J. Appl. Phys. 65(7), 2583–2590 (1989).
[CrossRef]

S. M. Hu, “Stress-Related Problems in Silicon Technology,” J. Appl. Phys. 70(6), R53–R80 (1991).
[CrossRef]

J. Biophoton.

T. Deckert-Gaudig, E. Bailo, and V. Deckert, “Perspectives for spatially resolved molecular spectroscopy - Raman on the nanometer scale,” J. Biophoton. 1(5), 377–389 (2008).
[CrossRef]

J. Electron. Mater.

H. Harima, T. Hosoda, and S. Nakashima, “Temperature measurement in a silicon carbide light emitting diode by Raman scattering,” J. Electron. Mater. 28(3), 141–143 (1999).
[CrossRef]

J. Raman Spectrosc.

M. Bauer, A. M. Gigler, A. J. Huber, R. Hillenbrand, and R. W. Stark, “Temperature depending Raman line-shift in silicon carbide,” J. Raman Spectrosc. (to be published)), doi:.
[CrossRef] [PubMed]

N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007).
[CrossRef]

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009).
[CrossRef]

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

Langmuir

T. Deckert-Gaudig, F. Erver, and V. Deckert, “Transparent silver microcrystals: synthesis and application for nanoscale analysis,” Langmuir 25(11), 6032–6034 (2009).
[CrossRef] [PubMed]

Microelectron. Eng.

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

Nano Lett.

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009).
[CrossRef] [PubMed]

Nat. Mater.

H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005).
[CrossRef] [PubMed]

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[CrossRef] [PubMed]

Nat. Nanotechnol.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Nature

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond. A

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
[CrossRef]

Phys. Rev. B

A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results,” Phys. Rev. B 59(10), 6774–6783 (1999).
[CrossRef]

D. Olego, M. Cardona, and P. Vogl, “Pressure-Dependence of the Optical Phonons and Transverse Effective Charge in 3C-SiC,” Phys. Rev. B 25(6), 3878–3888 (1982).
[CrossRef]

Phys. Rev. Lett.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond,” Phys. Rev. Lett. 72(26), 4105–4108 (1994).
[CrossRef] [PubMed]

J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures - Reply,” Phys. Rev. Lett. 77, 1661 (1996).
[CrossRef] [PubMed]

Phys. Status Solidi A

S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162(1), 39–64 (1997).
[CrossRef]

Rev. Sci. Instrum.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Rev. Sci. Instrum. 79(1), 013706 (2008).
[CrossRef] [PubMed]

Russ. Microelectron.

I. Neizvestnyi and V. Gridchin, “The use of stressed silicon in MOS transistors and CMOS structures,” Russ. Microelectron. 38(2), 71–86 (2009).
[CrossRef]

Semicond. Sci. Technol.

I. DeWolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[CrossRef]

Superlattices Microstruct.

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “Mapping strains at the nanoscale using electron back scatter diffraction,” Superlattices Microstruct. 45(4-5), 285–294 (2009).
[CrossRef]

Ultramicroscopy

A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity,” Ultramicroscopy 106(4-5), 307–313 (2006).
[CrossRef] [PubMed]

Vib. Spectrosc.

U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006).
[CrossRef]

Other

J. Baliga, Silicon Carbide Power Devices (World Scientific, Singapore, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(color online): Typical Raman spectrum of unstressed 6H-SiC of the most prominent phonon lines at 889.3 cm−1 (TO-planar) and 971.5 cm−1 (LO-axial). The inset shows the TO and LO peaks under tensile (blue), neutral (green), and compressive (red) loading causing corresponding line-shifts and line-broadening (symbols: experiment; lines: Lorentzian fit).

Fig. 2
Fig. 2

(color online): Confocal Raman microscopy and s-SNOM images of a locally stressed SiC sample. (a) Rayleigh intensity map. Four regions of interest are labeled A-D, (b, c) maps of the spectral position of the fitted TO and LO phonon lines as obtained by fitting a Lorentzian. Black triangles mark the contour of the indent. For comparison, s-SNOM amplitude maps of the identical indent are given in (d-f). (d) Shows the topography of the indent, (e) s-SNOM amplitude detected for ωIR = 924 cm−1 and (f) ωIR = 944 cm−1 laser frequencies reveal the characteristic amplitude contrasts around the indent. Note that in the near-field optical images the scratches exhibit a pronounced contrast, which can be explained by crystal damage caused by the mechanical polishing process [33].

Fig. 3
Fig. 3

(color online): s-SNOM hardware zoom into the right corner of the indent revealing a nanocrack emanating from the edge. (a) Topography and (b) s-SNOM amplitude at ωIR = 935 cm−1. The inset in (a) shows an additional hardware-zoom of the corner of the indent revealing a nanocrack in the topography data.

Metrics