Abstract

Evaluating cerebral oxygenation is of critical importance for the understanding of brain function and several neuropathologies. Although several techniques exist for measuring cerebral oxygenation in vivo, the most widely accepted techniques offer limited spatial resolution. We have developed a confocal imaging system for minimally invasive measurement of oxygen tension (pO2) in cerebral microvessels with high spatial and temporal resolution. The system relies on the phosphorescence quenching method using exogenous porphyrin-based dendritic oxygen probes. Here we present high-resolution phosphorescence images of cortical microvasculature and temporal pO2 profiles from multiple locations in response to varied fraction of inspired oxygen and functional activation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Shulman, F. Hyder, and D. L. Rothman, “Biophysical basis of brain activity: implications for neuroimaging,” Q. Rev. Biophys. 35(3), 287–325 (2002).
    [CrossRef] [PubMed]
  2. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
    [CrossRef] [PubMed]
  3. K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
    [CrossRef] [PubMed]
  4. H. M. Swartz, “Measuring real levels of oxygen in vivo: opportunities and challenges,” Biochem. Soc. Trans. 30(2), 248–252 (2002).
    [CrossRef] [PubMed]
  5. J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
    [CrossRef] [PubMed]
  6. F. Hyder, “Dynamic Imaging of Brain Function,” in Dynamic Brain Imaging: Multi-Modal Methods and In Vivo Applications, F. Hyder, ed. (Humana Press, Totowa, NJ, 2009), pp. 3–21.
  7. I. Kida, and F. Hyder, “Physiology of Functional Magnetic Resonance Imaging,” in Magnetic Resonance Imaging: Methods and Biologic Applications, P. V. Prasad, ed. (Humana Press Inc., Totowa, NJ, 2006).
  8. D. S. Vikram, J. L. Zweier, and P. Kuppusamy, “Methods for Noninvasive Imaging of Tissue Hypoxia,” Antioxid. Redox Signal. 9(10), 1745–1756 (2007).
    [CrossRef] [PubMed]
  9. W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue,” Science 241(4873), 1649–1651 (1988).
    [CrossRef] [PubMed]
  10. S. A. Vinogradov, L.-W. Lo, and D. F. Wilson, “Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence,” Chem. Eur. J. 5(4), 1338–1347 (1999).
    [CrossRef]
  11. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
    [CrossRef] [PubMed]
  12. A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
    [CrossRef]
  13. I. P. Torres Filho and M. Intaglietta, “Microvessel PO2 measurements by phosphorescence decay method,” Am. J. Physiol. 265(4 Pt 2), H1434–H1438 (1993).
    [PubMed]
  14. R. D. Shonat, D. F. Wilson, C. E. Riva, and M. Pawlowski, “Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method,” Appl. Opt. 31(19), 3711–3718 (1992).
    [CrossRef] [PubMed]
  15. M. Intaglietta, P. C. Johnson, and R. M. Winslow, “Microvascular and tissue oxygen distribution,” Cardiovasc. Res. 32(4), 632–643 (1996).
    [PubMed]
  16. E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol. 294(3), F676–F681 (2008).
    [CrossRef] [PubMed]
  17. R. L. Plant and D. H. Burns, “Quantitative, Depth-Resolved Imaging of Oxygen Concentration by Phosphorescence Lifetime Measurement,” Appl. Spectrosc. 47(10), 1594–1599 (1993).
    [CrossRef]
  18. I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994).
    [CrossRef] [PubMed]
  19. I. P. Torres Filho, H. Kerger, and M. Intaglietta, “pO2 Measurements in Arteriolar Networks,” Microvasc. Res. 51(2), 202–212 (1996).
    [CrossRef] [PubMed]
  20. A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
    [CrossRef]
  21. D. F. Wilson, S. A. Vinogradov, P. Grosul, M. N. Vaccarezza, A. Kuroki, and J. Bennett, “Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging,” Appl. Opt. 44(25), 5239–5248 (2005).
    [CrossRef] [PubMed]
  22. A. S. Golub and R. N. Pittman, “PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification,” Am. J. Physiol. Heart Circ. Physiol. 294(6), 2905–2916 (2008).
    [CrossRef]
  23. A. S. Golub, M. C. Barker, and R. N. Pittman, “Microvascular oxygen tension in the rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 294(1), H21–H28 (2007).
    [CrossRef] [PubMed]
  24. O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
    [CrossRef] [PubMed]
  25. A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, “Microvascular oxygen quantification using two-photon microscopy,” Opt. Lett. 33(10), 1038–1040 (2008).
    [CrossRef] [PubMed]
  26. E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
    [CrossRef] [PubMed]
  27. S. Sakadžić, S. Yuan, E. Dilekoz, S. Ruvinskaya, S. A. Vinogradov, C. Ayata, and D. A. Boas, “Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression,” Appl. Opt. 48(10), D169–D177 (2009).
    [CrossRef] [PubMed]
  28. E. P. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries, and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pfluegers Arch. Eur. J. Physiol. 437(4), 617–623 (1999).
    [CrossRef]
  29. K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004).
    [CrossRef]
  30. R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood Capillary Distribution Correlates with Hemodynamic-based Functional Imaging in Cerebral Cortex,” Cereb. Cortex (Cary) 12(3), 225–233 (2002).
    [CrossRef]
  31. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
    [CrossRef] [PubMed]
  32. F. Reina-De La Torre, A. Rodriguez-Baeza, and J. Sahuquillo-Barris, “Morphological Characteristics and Distribution Pattern of the Arterial Vessels in Human Cerebral Cortex: A Scanning Electron Microscope Study,” Anat. Rec. 251(1), 87–96 (1998).
    [CrossRef] [PubMed]

2009 (2)

A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
[CrossRef]

S. Sakadžić, S. Yuan, E. Dilekoz, S. Ruvinskaya, S. A. Vinogradov, C. Ayata, and D. A. Boas, “Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression,” Appl. Opt. 48(10), D169–D177 (2009).
[CrossRef] [PubMed]

2008 (5)

A. S. Golub and R. N. Pittman, “PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification,” Am. J. Physiol. Heart Circ. Physiol. 294(6), 2905–2916 (2008).
[CrossRef]

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, “Microvascular oxygen quantification using two-photon microscopy,” Opt. Lett. 33(10), 1038–1040 (2008).
[CrossRef] [PubMed]

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol. 294(3), F676–F681 (2008).
[CrossRef] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

2007 (3)

D. S. Vikram, J. L. Zweier, and P. Kuppusamy, “Methods for Noninvasive Imaging of Tissue Hypoxia,” Antioxid. Redox Signal. 9(10), 1745–1756 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

A. S. Golub, M. C. Barker, and R. N. Pittman, “Microvascular oxygen tension in the rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 294(1), H21–H28 (2007).
[CrossRef] [PubMed]

2006 (1)

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004).
[CrossRef]

2002 (5)

R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood Capillary Distribution Correlates with Hemodynamic-based Functional Imaging in Cerebral Cortex,” Cereb. Cortex (Cary) 12(3), 225–233 (2002).
[CrossRef]

R. G. Shulman, F. Hyder, and D. L. Rothman, “Biophysical basis of brain activity: implications for neuroimaging,” Q. Rev. Biophys. 35(3), 287–325 (2002).
[CrossRef] [PubMed]

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

H. M. Swartz, “Measuring real levels of oxygen in vivo: opportunities and challenges,” Biochem. Soc. Trans. 30(2), 248–252 (2002).
[CrossRef] [PubMed]

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[CrossRef] [PubMed]

1999 (2)

S. A. Vinogradov, L.-W. Lo, and D. F. Wilson, “Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence,” Chem. Eur. J. 5(4), 1338–1347 (1999).
[CrossRef]

E. P. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries, and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pfluegers Arch. Eur. J. Physiol. 437(4), 617–623 (1999).
[CrossRef]

1998 (1)

F. Reina-De La Torre, A. Rodriguez-Baeza, and J. Sahuquillo-Barris, “Morphological Characteristics and Distribution Pattern of the Arterial Vessels in Human Cerebral Cortex: A Scanning Electron Microscope Study,” Anat. Rec. 251(1), 87–96 (1998).
[CrossRef] [PubMed]

1997 (1)

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

1996 (3)

I. P. Torres Filho, H. Kerger, and M. Intaglietta, “pO2 Measurements in Arteriolar Networks,” Microvasc. Res. 51(2), 202–212 (1996).
[CrossRef] [PubMed]

M. Intaglietta, P. C. Johnson, and R. M. Winslow, “Microvascular and tissue oxygen distribution,” Cardiovasc. Res. 32(4), 632–643 (1996).
[PubMed]

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
[CrossRef] [PubMed]

1994 (1)

I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994).
[CrossRef] [PubMed]

1993 (2)

R. L. Plant and D. H. Burns, “Quantitative, Depth-Resolved Imaging of Oxygen Concentration by Phosphorescence Lifetime Measurement,” Appl. Spectrosc. 47(10), 1594–1599 (1993).
[CrossRef]

I. P. Torres Filho and M. Intaglietta, “Microvessel PO2 measurements by phosphorescence decay method,” Am. J. Physiol. 265(4 Pt 2), H1434–H1438 (1993).
[PubMed]

1992 (1)

1988 (1)

W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue,” Science 241(4873), 1649–1651 (1988).
[CrossRef] [PubMed]

Aprelev, A.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Arbeit, J. M.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Ayata, C.

S. Sakadžić, S. Yuan, E. Dilekoz, S. Ruvinskaya, S. A. Vinogradov, C. Ayata, and D. A. Boas, “Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression,” Appl. Opt. 48(10), D169–D177 (2009).
[CrossRef] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Bacskai, B. J.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Barker, M. C.

A. S. Golub, M. C. Barker, and R. N. Pittman, “Microvascular oxygen tension in the rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 294(1), H21–H28 (2007).
[CrossRef] [PubMed]

Bennett, J.

Boas, D. A.

S. Sakadžić, S. Yuan, E. Dilekoz, S. Ruvinskaya, S. A. Vinogradov, C. Ayata, and D. A. Boas, “Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression,” Appl. Opt. 48(10), D169–D177 (2009).
[CrossRef] [PubMed]

A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
[CrossRef]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Bouchard, M. B.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Box, G.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Brown, J. M.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Buerk, D. G.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

Burns, D. H.

Chao, K. S. C.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Chapman, J. D.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Cheprakov, A. V.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
[CrossRef]

Croft, B.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Dale, A. M.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Devor, A.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Dilekoz, E.

Dunn, A. K.

A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, “Microvascular oxygen quantification using two-photon microscopy,” Opt. Lett. 33(10), 1038–1040 (2008).
[CrossRef] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Dunphy, I.

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[CrossRef] [PubMed]

Eckelman, W. C.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Estrada, A. D.

Evans, S. M.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
[CrossRef] [PubMed]

Filho, I.

I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994).
[CrossRef] [PubMed]

Finikova, O. S.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Ford, T. N.

Friesenecker, B.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

Fyles, A. W.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Gao, F.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Garnacho, C.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Giaccia, A. J.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Gillies, R. J.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Golub, A. S.

A. S. Golub and R. N. Pittman, “PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification,” Am. J. Physiol. Heart Circ. Physiol. 294(6), 2905–2916 (2008).
[CrossRef]

A. S. Golub, M. C. Barker, and R. N. Pittman, “Microvascular oxygen tension in the rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 294(1), H21–H28 (2007).
[CrossRef] [PubMed]

Grosul, P.

Harel, N.

R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood Capillary Distribution Correlates with Hemodynamic-based Functional Imaging in Cerebral Cortex,” Cereb. Cortex (Cary) 12(3), 225–233 (2002).
[CrossRef]

Harrison, R. V.

R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood Capillary Distribution Correlates with Hemodynamic-based Functional Imaging in Cerebral Cortex,” Cereb. Cortex (Cary) 12(3), 225–233 (2002).
[CrossRef]

Hill, R. P.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Hochstrasser, R. M.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Hoffman, J.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Hyder, F.

R. G. Shulman, F. Hyder, and D. L. Rothman, “Biophysical basis of brain activity: implications for neuroimaging,” Q. Rev. Biophys. 35(3), 287–325 (2002).
[CrossRef] [PubMed]

Hyman, B. T.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Ince, C.

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol. 294(3), F676–F681 (2008).
[CrossRef] [PubMed]

Intaglietta, M.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

I. P. Torres Filho, H. Kerger, and M. Intaglietta, “pO2 Measurements in Arteriolar Networks,” Microvasc. Res. 51(2), 202–212 (1996).
[CrossRef] [PubMed]

M. Intaglietta, P. C. Johnson, and R. M. Winslow, “Microvascular and tissue oxygen distribution,” Cardiovasc. Res. 32(4), 632–643 (1996).
[PubMed]

I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994).
[CrossRef] [PubMed]

I. P. Torres Filho and M. Intaglietta, “Microvessel PO2 measurements by phosphorescence decay method,” Am. J. Physiol. 265(4 Pt 2), H1434–H1438 (1993).
[PubMed]

Jain, R. K.

I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994).
[CrossRef] [PubMed]

Jenkins, W. T.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
[CrossRef] [PubMed]

Johannes, T.

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol. 294(3), F676–F681 (2008).
[CrossRef] [PubMed]

Johnson, P. C.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

M. Intaglietta, P. C. Johnson, and R. M. Winslow, “Microvascular and tissue oxygen distribution,” Cardiovasc. Res. 32(4), 632–643 (1996).
[PubMed]

Jones, P. B.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Kelloff, G. J.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Kerger, H.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

I. P. Torres Filho, H. Kerger, and M. Intaglietta, “pO2 Measurements in Arteriolar Networks,” Microvasc. Res. 51(2), 202–212 (1996).
[CrossRef] [PubMed]

Kobayashi, H.

K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004).
[CrossRef]

Koch, C.

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
[CrossRef] [PubMed]

Koch, C. J.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Kondoh, Y.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Krauss, G. W.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Krishna, M. C.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Krohn, K. A.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Kuppusamy, P.

D. S. Vikram, J. L. Zweier, and P. Kuppusamy, “Methods for Noninvasive Imaging of Tissue Hypoxia,” Antioxid. Redox Signal. 9(10), 1745–1756 (2007).
[CrossRef] [PubMed]

Kurachi, T.

K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004).
[CrossRef]

Kuroki, A.

Lebedev, A. Y.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
[CrossRef]

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Leung, S.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Leunig, M.

I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994).
[CrossRef] [PubMed]

Lewis, J. S.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Liu, G.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Lo, L.-W.

S. A. Vinogradov, L.-W. Lo, and D. F. Wilson, “Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence,” Chem. Eur. J. 5(4), 1338–1347 (1999).
[CrossRef]

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
[CrossRef] [PubMed]

Masamoto, K.

K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004).
[CrossRef]

Mason, R. P.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Mazzoni, M. C.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

Melillo, G.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Mik, E. G.

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol. 294(3), F676–F681 (2008).
[CrossRef] [PubMed]

Moskowitz, M. A.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Mount, R. J.

R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood Capillary Distribution Correlates with Hemodynamic-based Functional Imaging in Cerebral Cortex,” Cereb. Cortex (Cary) 12(3), 225–233 (2002).
[CrossRef]

Muro, S.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Nagata, K.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Padhani, A. R.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Panesar, J.

R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood Capillary Distribution Correlates with Hemodynamic-based Functional Imaging in Cerebral Cortex,” Cereb. Cortex (Cary) 12(3), 225–233 (2002).
[CrossRef]

Pawlowski, M.

Pittman, R. N.

A. S. Golub and R. N. Pittman, “PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification,” Am. J. Physiol. Heart Circ. Physiol. 294(6), 2905–2916 (2008).
[CrossRef]

A. S. Golub, M. C. Barker, and R. N. Pittman, “Microvascular oxygen tension in the rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 294(1), H21–H28 (2007).
[CrossRef] [PubMed]

Plant, R. L.

Ponticorvo, A.

Powis, G.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Rajendran, J. G.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Reba, R.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Reina-De La Torre, F.

F. Reina-De La Torre, A. Rodriguez-Baeza, and J. Sahuquillo-Barris, “Morphological Characteristics and Distribution Pattern of the Arterial Vessels in Human Cerebral Cortex: A Scanning Electron Microscope Study,” Anat. Rec. 251(1), 87–96 (1998).
[CrossRef] [PubMed]

Riva, C. E.

Robinson, S. P.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Rodriguez-Baeza, A.

F. Reina-De La Torre, A. Rodriguez-Baeza, and J. Sahuquillo-Barris, “Morphological Characteristics and Distribution Pattern of the Arterial Vessels in Human Cerebral Cortex: A Scanning Electron Microscope Study,” Anat. Rec. 251(1), 87–96 (1998).
[CrossRef] [PubMed]

Rothman, D. L.

R. G. Shulman, F. Hyder, and D. L. Rothman, “Biophysical basis of brain activity: implications for neuroimaging,” Q. Rev. Biophys. 35(3), 287–325 (2002).
[CrossRef] [PubMed]

Rumsey, W. L.

W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue,” Science 241(4873), 1649–1651 (1988).
[CrossRef] [PubMed]

Ruvinskaya, S.

Sahuquillo-Barris, J.

F. Reina-De La Torre, A. Rodriguez-Baeza, and J. Sahuquillo-Barris, “Morphological Characteristics and Distribution Pattern of the Arterial Vessels in Human Cerebral Cortex: A Scanning Electron Microscope Study,” Anat. Rec. 251(1), 87–96 (1998).
[CrossRef] [PubMed]

Sakadžic, S.

S. Sakadžić, S. Yuan, E. Dilekoz, S. Ruvinskaya, S. A. Vinogradov, C. Ayata, and D. A. Boas, “Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression,” Appl. Opt. 48(10), D169–D177 (2009).
[CrossRef] [PubMed]

A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
[CrossRef]

Sato, M.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Satoh, Y.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Semenza, G. L.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Shimosegawa, E.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Shin, H. K.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Shonat, R. D.

Shulman, R. G.

R. G. Shulman, F. Hyder, and D. L. Rothman, “Biophysical basis of brain activity: implications for neuroimaging,” Q. Rev. Biophys. 35(3), 287–325 (2002).
[CrossRef] [PubMed]

Skoch, J.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Stone, H.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Sugawara, M.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Sullivan, D.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Swartz, H. M.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

H. M. Swartz, “Measuring real levels of oxygen in vivo: opportunities and challenges,” Biochem. Soc. Trans. 30(2), 248–252 (2002).
[CrossRef] [PubMed]

Takizawa, N.

K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004).
[CrossRef]

Tanishita, K.

K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004).
[CrossRef]

Tatum, J. L.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Torres Filho, I. P.

I. P. Torres Filho, H. Kerger, and M. Intaglietta, “pO2 Measurements in Arteriolar Networks,” Microvasc. Res. 51(2), 202–212 (1996).
[CrossRef] [PubMed]

I. P. Torres Filho and M. Intaglietta, “Microvessel PO2 measurements by phosphorescence decay method,” Am. J. Physiol. 265(4 Pt 2), H1434–H1438 (1993).
[PubMed]

Troxler, T.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Tsai, A. G.

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

Vaccarezza, M. N.

Vanderkooi, J. M.

W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue,” Science 241(4873), 1649–1651 (1988).
[CrossRef] [PubMed]

Vaupel, P.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Vikram, D. S.

D. S. Vikram, J. L. Zweier, and P. Kuppusamy, “Methods for Noninvasive Imaging of Tissue Hypoxia,” Antioxid. Redox Signal. 9(10), 1745–1756 (2007).
[CrossRef] [PubMed]

Vinogradov, S. A.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
[CrossRef]

S. Sakadžić, S. Yuan, E. Dilekoz, S. Ruvinskaya, S. A. Vinogradov, C. Ayata, and D. A. Boas, “Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression,” Appl. Opt. 48(10), D169–D177 (2009).
[CrossRef] [PubMed]

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

D. F. Wilson, S. A. Vinogradov, P. Grosul, M. N. Vaccarezza, A. Kuroki, and J. Bennett, “Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging,” Appl. Opt. 44(25), 5239–5248 (2005).
[CrossRef] [PubMed]

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[CrossRef] [PubMed]

S. A. Vinogradov, L.-W. Lo, and D. F. Wilson, “Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence,” Chem. Eur. J. 5(4), 1338–1347 (1999).
[CrossRef]

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
[CrossRef] [PubMed]

Vovenko, E. P.

E. P. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries, and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pfluegers Arch. Eur. J. Physiol. 437(4), 617–623 (1999).
[CrossRef]

Watahiki, Y.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Wilson, D. F.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
[CrossRef]

D. F. Wilson, S. A. Vinogradov, P. Grosul, M. N. Vaccarezza, A. Kuroki, and J. Bennett, “Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging,” Appl. Opt. 44(25), 5239–5248 (2005).
[CrossRef] [PubMed]

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[CrossRef] [PubMed]

S. A. Vinogradov, L.-W. Lo, and D. F. Wilson, “Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence,” Chem. Eur. J. 5(4), 1338–1347 (1999).
[CrossRef]

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
[CrossRef] [PubMed]

R. D. Shonat, D. F. Wilson, C. E. Riva, and M. Pawlowski, “Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method,” Appl. Opt. 31(19), 3711–3718 (1992).
[CrossRef] [PubMed]

W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue,” Science 241(4873), 1649–1651 (1988).
[CrossRef] [PubMed]

Winslow, R. M.

M. Intaglietta, P. C. Johnson, and R. M. Winslow, “Microvascular and tissue oxygen distribution,” Cardiovasc. Res. 32(4), 632–643 (1996).
[PubMed]

Wright, D.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Yang, D.

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

Yuan, F.

I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994).
[CrossRef] [PubMed]

Yuan, S.

Yuya, H.

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Zweier, J. L.

D. S. Vikram, J. L. Zweier, and P. Kuppusamy, “Methods for Noninvasive Imaging of Tissue Hypoxia,” Antioxid. Redox Signal. 9(10), 1745–1756 (2007).
[CrossRef] [PubMed]

ACS Applied Materials & Interfaces (1)

A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009).
[CrossRef]

Am. J. Physiol. (1)

I. P. Torres Filho and M. Intaglietta, “Microvessel PO2 measurements by phosphorescence decay method,” Am. J. Physiol. 265(4 Pt 2), H1434–H1438 (1993).
[PubMed]

Am. J. Physiol. Heart Circ. Physiol. (2)

A. S. Golub and R. N. Pittman, “PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification,” Am. J. Physiol. Heart Circ. Physiol. 294(6), 2905–2916 (2008).
[CrossRef]

A. S. Golub, M. C. Barker, and R. N. Pittman, “Microvascular oxygen tension in the rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 294(1), H21–H28 (2007).
[CrossRef] [PubMed]

Am. J. Physiol. Renal Physiol. (1)

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol. 294(3), F676–F681 (2008).
[CrossRef] [PubMed]

Anal. Biochem. (1)

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[CrossRef] [PubMed]

Anat. Rec. (1)

F. Reina-De La Torre, A. Rodriguez-Baeza, and J. Sahuquillo-Barris, “Morphological Characteristics and Distribution Pattern of the Arterial Vessels in Human Cerebral Cortex: A Scanning Electron Microscope Study,” Anat. Rec. 251(1), 87–96 (1998).
[CrossRef] [PubMed]

Ann. N. Y. Acad. Sci. (1)

K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002).
[CrossRef] [PubMed]

Antioxid. Redox Signal. (1)

D. S. Vikram, J. L. Zweier, and P. Kuppusamy, “Methods for Noninvasive Imaging of Tissue Hypoxia,” Antioxid. Redox Signal. 9(10), 1745–1756 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Biochem. Soc. Trans. (1)

H. M. Swartz, “Measuring real levels of oxygen in vivo: opportunities and challenges,” Biochem. Soc. Trans. 30(2), 248–252 (2002).
[CrossRef] [PubMed]

Biophys. J. (1)

S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996).
[CrossRef] [PubMed]

Brain Res. (1)

K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004).
[CrossRef]

Cardiovasc. Res. (1)

M. Intaglietta, P. C. Johnson, and R. M. Winslow, “Microvascular and tissue oxygen distribution,” Cardiovasc. Res. 32(4), 632–643 (1996).
[PubMed]

Cereb. Cortex (Cary) (1)

R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood Capillary Distribution Correlates with Hemodynamic-based Functional Imaging in Cerebral Cortex,” Cereb. Cortex (Cary) 12(3), 225–233 (2002).
[CrossRef]

Chem. Eur. J. (1)

S. A. Vinogradov, L.-W. Lo, and D. F. Wilson, “Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence,” Chem. Eur. J. 5(4), 1338–1347 (1999).
[CrossRef]

ChemPhysChem (1)

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[CrossRef] [PubMed]

Int. J. Radiat. Biol. (1)

J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Microvasc. Res. (1)

I. P. Torres Filho, H. Kerger, and M. Intaglietta, “pO2 Measurements in Arteriolar Networks,” Microvasc. Res. 51(2), 202–212 (1996).
[CrossRef] [PubMed]

Neuroimage (1)

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Pfluegers Arch. Eur. J. Physiol. (1)

E. P. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries, and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pfluegers Arch. Eur. J. Physiol. 437(4), 617–623 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997).
[CrossRef]

I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994).
[CrossRef] [PubMed]

Q. Rev. Biophys. (1)

R. G. Shulman, F. Hyder, and D. L. Rothman, “Biophysical basis of brain activity: implications for neuroimaging,” Q. Rev. Biophys. 35(3), 287–325 (2002).
[CrossRef] [PubMed]

Science (1)

W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue,” Science 241(4873), 1649–1651 (1988).
[CrossRef] [PubMed]

Other (2)

F. Hyder, “Dynamic Imaging of Brain Function,” in Dynamic Brain Imaging: Multi-Modal Methods and In Vivo Applications, F. Hyder, ed. (Humana Press, Totowa, NJ, 2009), pp. 3–21.

I. Kida, and F. Hyder, “Physiology of Functional Magnetic Resonance Imaging,” in Magnetic Resonance Imaging: Methods and Biologic Applications, P. V. Prasad, ed. (Humana Press Inc., Totowa, NJ, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic for confocal lifetime imaging system. Excitation light is provided by a diode laser λ=532 nm, which is spatially filtered with a pinhole (PH), polarized with a Glan laser calcite polarizer (P), and temporally gated with a shutter (SH) and electro-optical modulator (EOM). Excitation light is focused onto the cranial window using a 20x magnification objective (OBJ) with 0.95 numerical aperture. Focused light is directed to points of interest using galvanometric scanners (xy). Emitted phosphorescence light is detected using the same objective. It is spectrally separated from excitation light using a dichroic mirror (DM) and emission filter (EM) and detected with an avalanche photodiode (APD). The system is controlled by 2 computers (PC1, PC2) running custom-designed software.

Fig. 2
Fig. 2

(a) Color-coded angiogram of pial microvasculature from an exposed cranial window. Arterioles are indicated in red, and venules are blue. Measured pO2 values (mmHg) at selected intravascular locations are indicated in green. (b) Phosphorescence decay profiles measured at points identified with white boxes in Fig. 2(a). Higher O2 concentration in the arteriole causes more quenching of phosphorescence signal, and consequently a faster decay (red profile).

Fig. 3
Fig. 3

(a) Color-coded angiogram of cortical pial microvasculature. Green points identify intravascular locations where pO2 measurements were taken, and (b) corresponding temporal profiles of pO2 during measured while altering FiO2. The grey segments denote the 10 minute period during which FiO2 was lowered to 14%. Following this 10-minute duration, FiO2 was immediately increased up to 60%.

Fig. 4
Fig. 4

(a) CCD image of cranial window with confocal angiogram overlaid and region of functional activation identified in green (b) Color-coded angiogram of microvessels in rat somatosensory cortex, with identified locations for pO2 measurement. (c) Temporal profiles of pO2 during functional stimulation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 exp ( t τ ) + c

Metrics