Abstract

Here, we present a continuous-wave optical parametric terahertz light source that does not require cooling. It coherently emits a diffraction-limited terahertz beam that is tunable from 1.3 to 1.7 THz with power levels exceeding 1 µW. Simultaneous phase matching of two nonlinear processes within one periodically-poled lithium niobate crystal, situated in an optical resonator, is employed: The signal wave of a primary parametric process is enhanced in this resonator. Therefore, its power is sufficient for starting a second process, generating a backwards traveling terahertz wave. Such a scheme of cascaded processes increases the output power of a terahertz system by more than one order of magnitude compared with non-resonant difference frequency generation due to high intracavity powers. The existence of linearly polarized terahertz radiation at 1.35 THz is confirmed by analyzing the terahertz light with metal grid polarizers and a Fabry-Pérot interferometer.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1,98-104 (2007).
    [CrossRef]
  2. L. Ho, M. Pepper, and P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nat. Photon. 2,541-543 (2008).
    [CrossRef]
  3. J. D. Kraus, in Radio Astronomy (Cygnus-Quasar Books, Durham, 1986).
  4. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40,124-126 (2004).
    [CrossRef]
  5. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432,376-379 (2004).
    [CrossRef] [PubMed]
  6. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
    [CrossRef] [PubMed]
  7. M. B. Johnston, "Superfocusing of terahertz waves," Nat. Photon. 1,14-15 (2007).
    [CrossRef]
  8. S. Matsuura and H. Ito, Ch. 6 in Topics in Applied Physics: Terahertz optoelectronics, Vol. 11, K. Sakai edt. (Springer, Berlin, 2005) pp. 157-203.
  9. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
    [CrossRef] [PubMed]
  10. B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photon. 1,517-525 (2007).
    [CrossRef]
  11. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
    [CrossRef]
  12. Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
    [CrossRef] [PubMed]
  13. S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, "Enhancement of CW THz Wave Power Under Noncollinear Phase-Matching Conditions in Difference Frequency Generation," J. Lightwave Technol. 27,3057-3061 (2009).
    [CrossRef]
  14. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
    [CrossRef]
  15. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
    [CrossRef]
  16. A. Henderson and R. Stafford, "Intra-cavity power effects in singly-resonant cw OPOs," Appl. Phys. B: Lasers Opt. 85,181-184 (2006).
    [CrossRef]
  17. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, "Cascaded optical parametric oscillations generating tunable terahertz waves in periodically-poled lithium niobate crystals," Opt. Express 17,87-91 (2009).
    [CrossRef] [PubMed]
  18. R. L. Aggarwal and B. Lax, Ch. 2 in Topics in Applied Physics: Nonlinear infrared generation, Vol. 16, Y.-R. Shen edt. (Springer, Berlin, 1977) pp. 19-80.
  19. D. D. Lowenthal, "Cw periodically-poled LiNbO3 optical parametric oscillator model with strong idler absorption," IEEE J. Quantum Electron. 34,1356-1360 (1998).
    [CrossRef]
  20. T. Taniuchi and H. Nakanishi, "Collinear phase-matched terahertz-wave generation in GaP crystal using a dualwavelength optical parametric oscillator," J. Appl. Phys. 95,7588-7591 (2004).
    [CrossRef]
  21. J. Hebling, A. G. Stepanov, G. Almaasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B: Lasers Opt. 78,593-599 (2004).
    [CrossRef]
  22. R. Sowade, I. Breunig, J. Kiessling, and K. Buse, "Influence of the pump threshold on the single-frequency output power of singly-resonant optical parametric oscillators," Appl. Phys. B: Lasers Opt. 96,25-28 (2009).
    [CrossRef]
  23. C. Canalis and V. Pasiskevicius, "Mirrorless optical parametric oscillation," Nat. Photon. 1,459-462 (2007).
    [CrossRef]

2009

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, "Enhancement of CW THz Wave Power Under Noncollinear Phase-Matching Conditions in Difference Frequency Generation," J. Lightwave Technol. 27,3057-3061 (2009).
[CrossRef]

J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, "Cascaded optical parametric oscillations generating tunable terahertz waves in periodically-poled lithium niobate crystals," Opt. Express 17,87-91 (2009).
[CrossRef] [PubMed]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, "Influence of the pump threshold on the single-frequency output power of singly-resonant optical parametric oscillators," Appl. Phys. B: Lasers Opt. 96,25-28 (2009).
[CrossRef]

2008

L. Ho, M. Pepper, and P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nat. Photon. 2,541-543 (2008).
[CrossRef]

2007

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1,98-104 (2007).
[CrossRef]

M. B. Johnston, "Superfocusing of terahertz waves," Nat. Photon. 1,14-15 (2007).
[CrossRef]

B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photon. 1,517-525 (2007).
[CrossRef]

C. Canalis and V. Pasiskevicius, "Mirrorless optical parametric oscillation," Nat. Photon. 1,459-462 (2007).
[CrossRef]

2006

A. Henderson and R. Stafford, "Intra-cavity power effects in singly-resonant cw OPOs," Appl. Phys. B: Lasers Opt. 85,181-184 (2006).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
[CrossRef] [PubMed]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

2005

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

2004

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40,124-126 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432,376-379 (2004).
[CrossRef] [PubMed]

T. Taniuchi and H. Nakanishi, "Collinear phase-matched terahertz-wave generation in GaP crystal using a dualwavelength optical parametric oscillator," J. Appl. Phys. 95,7588-7591 (2004).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almaasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B: Lasers Opt. 78,593-599 (2004).
[CrossRef]

2002

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

1998

D. D. Lowenthal, "Cw periodically-poled LiNbO3 optical parametric oscillator model with strong idler absorption," IEEE J. Quantum Electron. 34,1356-1360 (1998).
[CrossRef]

Almaasi, G.

J. Hebling, A. G. Stepanov, G. Almaasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B: Lasers Opt. 78,593-599 (2004).
[CrossRef]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
[CrossRef] [PubMed]

Barbieri, S.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almaasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B: Lasers Opt. 78,593-599 (2004).
[CrossRef]

Beere, H. E.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Breunig, I.

J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, "Cascaded optical parametric oscillations generating tunable terahertz waves in periodically-poled lithium niobate crystals," Opt. Express 17,87-91 (2009).
[CrossRef] [PubMed]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, "Influence of the pump threshold on the single-frequency output power of singly-resonant optical parametric oscillators," Appl. Phys. B: Lasers Opt. 96,25-28 (2009).
[CrossRef]

Buse, K.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, "Influence of the pump threshold on the single-frequency output power of singly-resonant optical parametric oscillators," Appl. Phys. B: Lasers Opt. 96,25-28 (2009).
[CrossRef]

J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, "Cascaded optical parametric oscillations generating tunable terahertz waves in periodically-poled lithium niobate crystals," Opt. Express 17,87-91 (2009).
[CrossRef] [PubMed]

Canalis, C.

C. Canalis and V. Pasiskevicius, "Mirrorless optical parametric oscillation," Nat. Photon. 1,459-462 (2007).
[CrossRef]

Chassagneux, Y.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
[CrossRef] [PubMed]

Colombelli, R.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

Davies, A. G.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Dawson, P.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40,124-126 (2004).
[CrossRef]

Dierolf, V.

Faist, J.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
[CrossRef] [PubMed]

Hebling, J.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almaasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B: Lasers Opt. 78,593-599 (2004).
[CrossRef]

Hein, G.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40,124-126 (2004).
[CrossRef]

Henderson, A.

A. Henderson and R. Stafford, "Intra-cavity power effects in singly-resonant cw OPOs," Appl. Phys. B: Lasers Opt. 85,181-184 (2006).
[CrossRef]

Ho, L.

L. Ho, M. Pepper, and P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nat. Photon. 2,541-543 (2008).
[CrossRef]

Iotti, R. C.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Johnston, M. B.

M. B. Johnston, "Superfocusing of terahertz waves," Nat. Photon. 1,14-15 (2007).
[CrossRef]

Khanna, S. P.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

Kiessling, J.

J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, "Cascaded optical parametric oscillations generating tunable terahertz waves in periodically-poled lithium niobate crystals," Opt. Express 17,87-91 (2009).
[CrossRef] [PubMed]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, "Influence of the pump threshold on the single-frequency output power of singly-resonant optical parametric oscillators," Appl. Phys. B: Lasers Opt. 96,25-28 (2009).
[CrossRef]

Kleine-Ostmann, T.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40,124-126 (2004).
[CrossRef]

Koch, M.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40,124-126 (2004).
[CrossRef]

Kohler, R.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Kuhl, J.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almaasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B: Lasers Opt. 78,593-599 (2004).
[CrossRef]

Linfield, E. H.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Lowenthal, D. D.

D. D. Lowenthal, "Cw periodically-poled LiNbO3 optical parametric oscillator model with strong idler absorption," IEEE J. Quantum Electron. 34,1356-1360 (1998).
[CrossRef]

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

Maineult, W.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

Mittleman, D. M.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432,376-379 (2004).
[CrossRef] [PubMed]

Nakanishi, H.

T. Taniuchi and H. Nakanishi, "Collinear phase-matched terahertz-wave generation in GaP crystal using a dualwavelength optical parametric oscillator," J. Appl. Phys. 95,7588-7591 (2004).
[CrossRef]

Nishizawa, J.

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, "Enhancement of CW THz Wave Power Under Noncollinear Phase-Matching Conditions in Difference Frequency Generation," J. Lightwave Technol. 27,3057-3061 (2009).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Oyama, Y.

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, "Enhancement of CW THz Wave Power Under Noncollinear Phase-Matching Conditions in Difference Frequency Generation," J. Lightwave Technol. 27,3057-3061 (2009).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
[CrossRef] [PubMed]

Palfalvi, L.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

Pasiskevicius, V.

C. Canalis and V. Pasiskevicius, "Mirrorless optical parametric oscillation," Nat. Photon. 1,459-462 (2007).
[CrossRef]

Pepper, M.

L. Ho, M. Pepper, and P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nat. Photon. 2,541-543 (2008).
[CrossRef]

Peter, A.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

Pierz, K.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40,124-126 (2004).
[CrossRef]

Polgar, K.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

Ragam, S.

Ritchie, D. A.

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Saito, K.

Sasaki, T.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Sowade, R.

J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, "Cascaded optical parametric oscillations generating tunable terahertz waves in periodically-poled lithium niobate crystals," Opt. Express 17,87-91 (2009).
[CrossRef] [PubMed]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, "Influence of the pump threshold on the single-frequency output power of singly-resonant optical parametric oscillators," Appl. Phys. B: Lasers Opt. 96,25-28 (2009).
[CrossRef]

Stafford, R.

A. Henderson and R. Stafford, "Intra-cavity power effects in singly-resonant cw OPOs," Appl. Phys. B: Lasers Opt. 85,181-184 (2006).
[CrossRef]

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almaasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B: Lasers Opt. 78,593-599 (2004).
[CrossRef]

Suto, K.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Taday, P.

L. Ho, M. Pepper, and P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nat. Photon. 2,541-543 (2008).
[CrossRef]

Tanabe, T.

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, "Enhancement of CW THz Wave Power Under Noncollinear Phase-Matching Conditions in Difference Frequency Generation," J. Lightwave Technol. 27,3057-3061 (2009).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Taniuchi, T.

T. Taniuchi and H. Nakanishi, "Collinear phase-matched terahertz-wave generation in GaP crystal using a dualwavelength optical parametric oscillator," J. Appl. Phys. 95,7588-7591 (2004).
[CrossRef]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
[CrossRef] [PubMed]

Tonouchi, M.

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1,98-104 (2007).
[CrossRef]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432,376-379 (2004).
[CrossRef] [PubMed]

Watanabe, Y.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

Williams, B. S.

B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photon. 1,517-525 (2007).
[CrossRef]

Witzigmann, B.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
[CrossRef] [PubMed]

Appl. Phys. B: Lasers Opt.

A. Henderson and R. Stafford, "Intra-cavity power effects in singly-resonant cw OPOs," Appl. Phys. B: Lasers Opt. 85,181-184 (2006).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almaasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B: Lasers Opt. 78,593-599 (2004).
[CrossRef]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, "Influence of the pump threshold on the single-frequency output power of singly-resonant optical parametric oscillators," Appl. Phys. B: Lasers Opt. 96,25-28 (2009).
[CrossRef]

Electron. Lett.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, "Audio signal transmission over THz communication channel using semiconductor modulator," Electron. Lett. 40,124-126 (2004).
[CrossRef]

IEEE J. Quantum Electron.

D. D. Lowenthal, "Cw periodically-poled LiNbO3 optical parametric oscillator model with strong idler absorption," IEEE J. Quantum Electron. 34,1356-1360 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, "Continuous-wave frequency-tunable terahertz-wave generation from GaP," IEEE Photon. Technol. Lett. 18,2008-2010 (2006).
[CrossRef]

J. Appl. Phys.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

T. Taniuchi and H. Nakanishi, "Collinear phase-matched terahertz-wave generation in GaP crystal using a dualwavelength optical parametric oscillator," J. Appl. Phys. 95,7588-7591 (2004).
[CrossRef]

J. Lightwave Technol.

Nat. Photon.

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1,98-104 (2007).
[CrossRef]

L. Ho, M. Pepper, and P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nat. Photon. 2,541-543 (2008).
[CrossRef]

M. B. Johnston, "Superfocusing of terahertz waves," Nat. Photon. 1,14-15 (2007).
[CrossRef]

B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photon. 1,517-525 (2007).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nat. Photon. 3,46-49 (2009).
[CrossRef]

C. Canalis and V. Pasiskevicius, "Mirrorless optical parametric oscillation," Nat. Photon. 1,459-462 (2007).
[CrossRef]

Nature

Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457,174-178 (2009).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432,376-379 (2004).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
[CrossRef] [PubMed]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417,156-159 (2002).
[CrossRef] [PubMed]

Opt. Express

Other

R. L. Aggarwal and B. Lax, Ch. 2 in Topics in Applied Physics: Nonlinear infrared generation, Vol. 16, Y.-R. Shen edt. (Springer, Berlin, 1977) pp. 19-80.

J. D. Kraus, in Radio Astronomy (Cygnus-Quasar Books, Durham, 1986).

S. Matsuura and H. Ito, Ch. 6 in Topics in Applied Physics: Terahertz optoelectronics, Vol. 11, K. Sakai edt. (Springer, Berlin, 2005) pp. 157-203.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) A pump wave (wavevector kp) is converted into a signal and an idler wave (wavevectors ks1, ki1). Quasi-phase-matching is obtained by a periodically-poled crystal with K⃗ being the grating vector. (b) The signal wave of the primary process (ks1) acts as a pump wave for the cascaded parametric process, generating the second signal and idler waves (ks2,ki2), taking benefit from the same K⃗ to ensure phase-matching. The backwards propagating second idler wave is in the terahertz regime: ki2=kTHz. - The lengths of the wavevectors do not scale.

Fig. 2.
Fig. 2.

Terahertz optical parametric oscillator: Pump light generates signal and idler waves. The signal light is trapped within a ring cavity, being able to serve as a pump wave for another, cascaded optical parametric process that generates a backwards-traveling terahertz wave. This terahertz wave is deflected out of the resonator by a parabolic mirror which transmits pump and signal waves.

Fig. 3.
Fig. 3.

Signal power and terahertz power. a) Signal power (red ⊪) vs. pump power (p). b) Power of the terahertz wave (blue×) with respect to the pump power (p). - In both panels the symbols are measured values, solid lines act as guides to the eye. A and B label points at which spectra were taken (see also Fig. 4).

Fig. 4.
Fig. 4.

Spectra of the signal waves. (A) Spectrum taken at a pump power of 4.3 W. Only the signal wave of the primary parametric process, λ s1, is present at 1557 nm. (B) Spectrum taken at a pump power of 5.0 W. The signal waves of the primary and the cascaded parametric processes, λ s1 and λ s2, appear with a frequency separation of 1.35 THz.

Fig. 5.
Fig. 5.

Polarization properties of the terahertz wave. Terahertz output power (blue ×) with respect to the orientation of a metal grid polarizer. The same measurement was performed twice back and forth. The black solid line shows a calculated sinusoidal shape while the dashed lines mark the baseline. The insets illustrate the orientation of the wires with respect to the polarization of terahertz wave (↕).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k p = k s + k i + K .
k THz = k s 2 k s 1 + K .

Metrics