Abstract

We report on the demonstration of a broadband (60 GHz), spectrally hitless, compact (20 µm x 40 µm), fast (7 ns) electro-optical switch. The device is composed of two coupled resonant cavities, each with an independently addressable PIN diode. This topology enables operation of the switch without perturbing adjacent channels in a wavelength division multiplexing (WDM) system.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, “On the Design of a Photonic Network-on-Chip,” in Proceedings of IEEE International Symposium on Networks-on-Chips (IEEE, 2007), pp. 53–64.
  2. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics,” in 16th IEEE Symposium on High Performance Interconnects, 2008. HOTI '08, 21–30, 26–28 Aug. 2008.
  3. International Technology Roadmap for Semiconductors, (ITRS 2007) http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf .
  4. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
    [CrossRef]
  5. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31(18), 2701–2703 (2006).
    [CrossRef] [PubMed]
  6. F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and J. Renau, “Measuring performance, power, and temperature from real processors,” in Proc. of the 2007 Workshop on Experimental Computer Science, San Diego, CA, Jun. 13 - 14, 2007. ExpCS '07. ACM, New York, NY.
  7. Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and Stable Wavelength-Selective Switch Using Double-Series Coupled Dielectric Microring Resonator,” IEEE Photon. Technol. Lett. 18(3), 538–540 (2006).
    [CrossRef]
  8. Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. Express 16(2), 535–548 (2008).
    [CrossRef] [PubMed]
  9. M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, May 10, 2007, postdeadline paper CPDA2.
  10. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  11. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband Hitless Bypass Switch for Integrated Photonic Circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
    [CrossRef]
  12. S. Y. Cho and R. Soref, “Interferometric microring-resonant 2 x 2 optical switches,” Opt. Express 16(17), 13304–13314 (2008).
    [CrossRef] [PubMed]
  13. M. Watts, D. C. Trotter, and R. W. Young, “Maximally Confined High-Speed Second-Order Silicon Microdisk Switches,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP14.
  14. C. Li, X. Luo, and A. W. Poon, “Dual-microring-resonator electro-optic logic switches on a silicon chip,” Semicond. Sci. Technol. 23(6), 064010 (2008).
    [CrossRef]
  15. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), p. 537.
  16. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
    [CrossRef]
  17. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of Multiple-Ring-Resonator Filters for Optical Systems,” IEEE Photon. Technol. Lett. 7(12), 1447–1449 (1995).
    [CrossRef]
  18. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [CrossRef]
  19. A. Melloni and M. Martinelli, “Synthesis of Direct-Coupled-Resonators Bandpass Filters for WDM Systems,” J. Lightwave Technol. 20(2), 296–303 (2002).
    [CrossRef]
  20. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [CrossRef]
  21. J. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
    [CrossRef] [PubMed]
  22. F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006).
    [CrossRef] [PubMed]
  23. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  24. C. Manolatou and M. Lipson, “All-Optical Silicon Modulators Based on Carrier Injection by Two-Photon Absorption,” J. Lightwave Technol. 24(3), 1433–1439 (2006).
    [CrossRef]
  25. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica E (Amsterdam) 34(1), 149–154 (1967).
    [CrossRef]
  26. P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
    [CrossRef]
  27. R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  28. H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
    [CrossRef]
  29. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
    [CrossRef] [PubMed]
  30. S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator,” Opt. Express 15(20), 13035–13042 (2007).
    [CrossRef] [PubMed]
  31. J. Van Campenhout, W. M. J. Green, X. Liu, S. Assefa, R. M. Osgood, and Y. A. Vlasov, “Silicon-nitride surface passivation of submicrometer silicon waveguides for low-power optical switches,” Opt. Lett. 34(10), 1534–1536 (2009).
    [CrossRef] [PubMed]

2009 (2)

2008 (5)

2007 (1)

2006 (6)

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband Hitless Bypass Switch for Integrated Photonic Circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and Stable Wavelength-Selective Switch Using Double-Series Coupled Dielectric Microring Resonator,” IEEE Photon. Technol. Lett. 18(3), 538–540 (2006).
[CrossRef]

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006).
[CrossRef] [PubMed]

C. Manolatou and M. Lipson, “All-Optical Silicon Modulators Based on Carrier Injection by Two-Photon Absorption,” J. Lightwave Technol. 24(3), 1433–1439 (2006).
[CrossRef]

B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31(18), 2701–2703 (2006).
[CrossRef] [PubMed]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004 (2)

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

J. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

1995 (1)

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of Multiple-Ring-Resonator Filters for Optical Systems,” IEEE Photon. Technol. Lett. 7(12), 1447–1449 (1995).
[CrossRef]

1990 (1)

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica E (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

Assefa, S.

Baets, R.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Beckx, S.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bergman, K.

Bienstman, P.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Bogaerts, W.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[CrossRef]

Cho, S. Y.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Dumon, P.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

Goebuchi, Y.

Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. Express 16(2), 535–548 (2008).
[CrossRef] [PubMed]

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and Stable Wavelength-Selective Switch Using Double-Series Coupled Dielectric Microring Resonator,” IEEE Photon. Technol. Lett. 18(3), 538–540 (2006).
[CrossRef]

Green, W. M. J.

J. Van Campenhout, W. M. J. Green, X. Liu, S. Assefa, R. M. Osgood, and Y. A. Vlasov, “Silicon-nitride surface passivation of submicrometer silicon waveguides for low-power optical switches,” Opt. Lett. 34(10), 1534–1536 (2009).
[CrossRef] [PubMed]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Haus, H. A.

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband Hitless Bypass Switch for Integrated Photonic Circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Hisada, M.

Huang, H. C.

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

Huang, Y.

Jaenen, P.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Ka, T.

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and Stable Wavelength-Selective Switch Using Double-Series Coupled Dielectric Microring Resonator,” IEEE Photon. Technol. Lett. 18(3), 538–540 (2006).
[CrossRef]

Kato, T.

Kokubun, Y.

Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. Express 16(2), 535–548 (2008).
[CrossRef] [PubMed]

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and Stable Wavelength-Selective Switch Using Double-Series Coupled Dielectric Microring Resonator,” IEEE Photon. Technol. Lett. 18(3), 538–540 (2006).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Lee, B. G.

Li, C.

C. Li, X. Luo, and A. W. Poon, “Dual-microring-resonator electro-optic logic switches on a silicon chip,” Semicond. Sci. Technol. 23(6), 064010 (2008).
[CrossRef]

Liang, T. K.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Lipson, M.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Liu, X.

Luo, X.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[CrossRef]

C. Li, X. Luo, and A. W. Poon, “Dual-microring-resonator electro-optic logic switches on a silicon chip,” Semicond. Sci. Technol. 23(6), 064010 (2008).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

Manipatruni, S.

Manolatou, C.

Martinelli, M.

Melloni, A.

Mookherjea, S.

Nunes, L. R.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Orta, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of Multiple-Ring-Resonator Filters for Optical Systems,” IEEE Photon. Technol. Lett. 7(12), 1447–1449 (1995).
[CrossRef]

Osgood, R. M.

Painter, O.

Paloczi, G. T.

Poon, A. W.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[CrossRef]

C. Li, X. Luo, and A. W. Poon, “Dual-microring-resonator electro-optic logic switches on a silicon chip,” Semicond. Sci. Technol. 23(6), 064010 (2008).
[CrossRef]

Poon, J.

Popovic, M. A.

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband Hitless Bypass Switch for Integrated Photonic Circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Preston, K.

Priem, G.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Robinson, J. T.

Savi, P.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of Multiple-Ring-Resonator Filters for Optical Systems,” IEEE Photon. Technol. Lett. 7(12), 1447–1449 (1995).
[CrossRef]

Scheuer, J.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Sekaric, L.

Small, B. A.

Soma, M.

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

Soref, R.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

Tascone, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of Multiple-Ring-Resonator Filters for Optical Systems,” IEEE Photon. Technol. Lett. 7(12), 1447–1449 (1995).
[CrossRef]

Trinchero, D.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of Multiple-Ring-Resonator Filters for Optical Systems,” IEEE Photon. Technol. Lett. 7(12), 1447–1449 (1995).
[CrossRef]

Tsuchiya, M.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Van Campenhout, J.

van Thourhout, D.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica E (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Vlasov, Y. A.

Watts, M. R.

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband Hitless Bypass Switch for Integrated Photonic Circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

Wouters, J.

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006).
[CrossRef] [PubMed]

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[CrossRef]

Xu, Q.

Yariv, A.

J. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
[CrossRef] [PubMed]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

Yee, S.

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and Stable Wavelength-Selective Switch Using Double-Series Coupled Dielectric Microring Resonator,” IEEE Photon. Technol. Lett. 18(3), 538–540 (2006).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004).
[CrossRef]

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of Multiple-Ring-Resonator Filters for Optical Systems,” IEEE Photon. Technol. Lett. 7(12), 1447–1449 (1995).
[CrossRef]

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband Hitless Bypass Switch for Integrated Photonic Circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

J. Appl. Phys. (1)

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (1)

P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006).
[CrossRef]

Nat. Photonics (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Physica E (Amsterdam) (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica E (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[CrossRef]

Semicond. Sci. Technol. (1)

C. Li, X. Luo, and A. W. Poon, “Dual-microring-resonator electro-optic logic switches on a silicon chip,” Semicond. Sci. Technol. 23(6), 064010 (2008).
[CrossRef]

Other (7)

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), p. 537.

M. Watts, D. C. Trotter, and R. W. Young, “Maximally Confined High-Speed Second-Order Silicon Microdisk Switches,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP14.

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, May 10, 2007, postdeadline paper CPDA2.

A. Shacham, K. Bergman, and L. P. Carloni, “On the Design of a Photonic Network-on-Chip,” in Proceedings of IEEE International Symposium on Networks-on-Chips (IEEE, 2007), pp. 53–64.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics,” in 16th IEEE Symposium on High Performance Interconnects, 2008. HOTI '08, 21–30, 26–28 Aug. 2008.

International Technology Roadmap for Semiconductors, (ITRS 2007) http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf .

F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and J. Renau, “Measuring performance, power, and temperature from real processors,” in Proc. of the 2007 Workshop on Experimental Computer Science, San Diego, CA, Jun. 13 - 14, 2007. ExpCS '07. ACM, New York, NY.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Hitless switch scheme. a) When the switch is OFF, a single wavelength channel in a WDM system is directed to the drop port. b) When the switch is ON, no channel is dropped.

Fig. 2
Fig. 2

(a) Schematic of two coupled ring resonators with (b) its theoretical through port transmission spectrum. Red line shows the original transmission where the two cavities share the same resonance. The blue line shows a transient state and green line the final state of the switch, where detuning was provided by changing the refractive index of the right cavity.

Fig. 3
Fig. 3

(a) SEM picture of the device with the p+ (green) and n+ (red) implanted areas highlighted. The Si waveguides have 250 nm x 450 nm cross-section. The device is clad with 1 µm of silicon dioxide and has a 3 µm silicon dioxide BOX. Each cavity has a total length 2π∙10 µm with 8 µm bend radius. (b) Optical microscope picture of the device before evaporating aluminum for contact pads. (c) Spectrum of the fabricated device without any carrier injection.

Fig. 4
Fig. 4

(a) Dynamics of the spectrum for the through port. Switch starts in OFF state (red), it is turned ON at 15 ns (green) and is turned OFF again at 110 ns (red). (b) Dynamics of the spectrum for the drop port. Notice that the box-like spectrum disappears in the period where the switch is kept ON.

Fig. 5
Fig. 5

(a) Instantaneous spectrum for the switch off at 10 ns. (b) Instantaneous spectrum for the switch on at 107.5 ns Dotted lines represent experimental data while continuous lines are the calculated values.

Fig. 6
Fig. 6

(a) Time domain response for a single 1550.8 nm wavelength as input. Experimental result is shown in dotted lines, while result from fitting is shown in continuous line; (b) time domain for a 1 GHz modulated signal as input.

Fig. 7
Fig. 7

Eye diagram of a 10 Gbps signal (a) at input and (b) at drop port.

Fig. 9
Fig. 9

Insertion losses of the switch. Spectrum shows the insertion losses for A. the drop port insertion loss when the switch is OFF, B. the through port insertion loss at the central wavelength when the switch is ON And C. The through port insertion loss at the detuned wavelength when the switch is ON.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E t = t 2 e i ϕ 2 a 2 E t 1 1 t 2 e i ϕ 2 a 2 E t 1    and    E d = e i ϕ 2 a 2 ( i k 2 ) E d 1 1 t 2 e i ϕ 2 a 2 E t 1
E t 1 = t 1 e i ϕ 1 a 1 t 0 1 t 1 e i ϕ 1 a 1 t 0   and   E d 1 = e i ϕ 1 a 1 ( i k 1 ) ( i k 0 ) 1 t 1 e i ϕ 1 a 1 t 0
a i = e α + Δ α i 2 2 π R   and   ϕ i = 2 π λ ( n g + Δ n e f f i ) 2 π R
t 2 = a 2 t 0
t 1 = cos ϕ 0 2 a t 0 1 + t 0 2 a 2
( a t 0 ) 4 2 ( 1 cos ϕ 0 ) β a ( a t 0 ) 3 ( a 2 + 1 ) ( 2 cos ϕ 0 1 ) a 2 ( a t 0 ) 2 2 ( 1 cos ϕ 0 ) β a ( a t 0 ) + 1 a 2 = 0
ϕ 0 = 2 π 2 2 λ c 2 c 0 Δ f F S R   or   ϕ 0 = 2 π 2 2 Δ f f s r
ϕ min = 2 ( a 4 + a 2 ) β ( a 6 + a 4 + a 2 + 1 ) 2 ( 1 β ) ( a 4 + a 2 )
Δ n e f f = c 1 I + c 2 I 2
Δ n e f f = [ 2 n g λ ] [ Δ λ D C max I max ] I + [ n g λ ] [ Δ λ D C max I max 2 ] I 2 ,
Δ n S i = 8.8 × 10 22 N 8.5 × 10 18 P 0.8 ,   [ N ] = [ P ] = c m 3
Δ α = 8.5 × 10 18 N + 6.0 × 10 18 P ,   [ Δ α ] = c m 1
Δ n M A X = λ 4 π R .

Metrics