Abstract

An approach to reducing the chromatic dispersion due to coupling between input waveguides before the input slab for a synchronized-router-based flat-passband filter using a multiple-input arrayed waveguide grating (AWG) is proposed. The proposed method uses phase compensation at the waveguide array of the AWG by correction of waveguide lengths. The characteristics of the flat-passband filter that consists of a multiple-input AWG combined with cascaded Mach-Zehnder interferometers (MZIs) are simulated using a theoretical model of the multiple-input AWG based on Fourier optics and the coupled-mode theory. The simulation result reveals that the chromatic dispersion within the passband can be significantly reduced by using phase compensation and additional dummy waveguides at the input just before the slab.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
    [CrossRef] [PubMed]
  2. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
    [CrossRef]
  3. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
    [CrossRef]
  4. C. Dragone, “Efficient techniques for widening the passband of a wavelength router,” J. Lightwave Technol. 16(10), 1895–1906 (1998).
    [CrossRef]
  5. G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.
  6. T. Kamalakis and T. Sphicopoulos, “An efficient technique for the design of an arrayed-waveguide grating with flat spectral response,” J. Lightwave Technol. 19(11), 1716–1725 (2001).
    [CrossRef]
  7. J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8(6), 1186–1193 (2002).
    [CrossRef]
  8. C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14(1), 56–58 (2002).
    [CrossRef]
  9. M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
    [CrossRef]
  10. C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8(6), 1168–1178 (2002).
    [CrossRef]
  11. C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15(8), 1088–1090 (2003).
    [CrossRef]
  12. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005).
    [CrossRef]
  13. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
    [CrossRef]
  14. K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(2), 544–555 (2007).
    [CrossRef]
  15. K. Maru, T. Mizumoto, and H. Uetsuka, “Flat-passband arrayed waveguide grating employing cascaded Mach-Zehnder interferometers,” in Proceedings of 11th Optoelectronics and Communications Conf. (OECC2006), 5B2–5.
  16. C. Dragone, “Efficient N x N star couplers using Fourier optics,” J. Lightwave Technol. 7(3), 479–489 (1989).
    [CrossRef]
  17. H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express 6(6), 124–135 (2000).
    [CrossRef] [PubMed]
  18. P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol. 20(4), 661–674 (2002).
    [CrossRef]
  19. K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(8), 2187–2197 (2007).
    [CrossRef]
  20. K. Maru, T. Mizumoto, and H. Uetsuka, “Super-high-Δ silica-based flat-passband filter using AWG and cascaded Mach-Zehnder interferometers,” in Proceedings of 12th Optoelectronics and Communications Conf./16th International Conf. on Integrated Optics and Optical Fiber Communication (OECC/IOOC2007), 12E4–3.
  21. C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
    [CrossRef]
  22. N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988).
    [CrossRef]
  23. B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
    [CrossRef]
  24. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis (John Willey & Sons, New York, 1999), pp. 171–177.
  25. H. Dym, and H. P. McKean, Fourier series and integrals (Academic Press, New York, 1972), Chap. 1, pp. 31–32.
  26. A. Yariv, “Coupled-mode theory for guided-wave optics,” J. Quantum Electron. 9(9), 919–933 (1973).
    [CrossRef]
  27. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9(4), 125–127 (1984).
    [CrossRef] [PubMed]
  28. C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
    [CrossRef]
  29. I. Kaminow, and T. Li, Optical Fiber Telecommunications IVA (Academic Press, San Diego, 2002), pp. 424–427.
  30. K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
    [CrossRef]

2007 (2)

2006 (1)

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

2005 (1)

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005).
[CrossRef]

2003 (1)

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15(8), 1088–1090 (2003).
[CrossRef]

2002 (5)

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8(6), 1186–1193 (2002).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14(1), 56–58 (2002).
[CrossRef]

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
[CrossRef]

C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8(6), 1168–1178 (2002).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol. 20(4), 661–674 (2002).
[CrossRef]

2001 (1)

2000 (3)

H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express 6(6), 124–135 (2000).
[CrossRef] [PubMed]

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

1999 (1)

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

1998 (1)

1996 (2)

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

1995 (1)

1989 (1)

C. Dragone, “Efficient N x N star couplers using Fourier optics,” J. Lightwave Technol. 7(3), 479–489 (1989).
[CrossRef]

1988 (2)

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988).
[CrossRef]

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
[CrossRef]

1984 (1)

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

Abe, M.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
[CrossRef]

Amersfoort, M. R.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
[CrossRef]

Andreadakis, N. C.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
[CrossRef]

Buhl, L.

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

Buhl, L. L.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

Caneau, C.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
[CrossRef]

Capmany, J.

Cappuzzo, M.

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Cappuzzo, M. A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005).
[CrossRef]

Chandrasekhar, S.

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

Chen, E. Y.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005).
[CrossRef]

Doerr, C. R.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005).
[CrossRef]

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15(8), 1088–1090 (2003).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14(1), 56–58 (2002).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Dragone, C.

C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8(6), 1168–1178 (2002).
[CrossRef]

C. Dragone, “Efficient techniques for widening the passband of a wavelength router,” J. Lightwave Technol. 16(10), 1895–1906 (1998).
[CrossRef]

C. Dragone, “Efficient N x N star couplers using Fourier optics,” J. Lightwave Technol. 7(3), 479–489 (1989).
[CrossRef]

Gates, J.

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Gomez, L.

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Gomez, L. T.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005).
[CrossRef]

He, J.-J.

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8(6), 1186–1193 (2002).
[CrossRef]

Henry, C. H.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
[CrossRef]

Hibino, Y.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
[CrossRef]

Inoue, Y.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
[CrossRef]

Ishii, M.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
[CrossRef]

Jinguji, K.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988).
[CrossRef]

Johnson, B. H.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
[CrossRef]

Kamalakis, T.

Kapon, E.

Katz, J.

Kawachi, M.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988).
[CrossRef]

Kazarinov, R. F.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
[CrossRef]

Kim, H. K.

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

Kitoh, I.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
[CrossRef]

Kohtoku, M.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
[CrossRef]

Kurokawa, T.

Laskowski, E.

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

LeBlanc, H. P.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
[CrossRef]

Maru, K.

Mizumoto, T.

Muñoz, P.

Okamoto, K.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
[CrossRef] [PubMed]

Olsson, N. A.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
[CrossRef]

Orlowsky, K. J.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
[CrossRef]

Pafchek, R.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15(8), 1088–1090 (2003).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14(1), 56–58 (2002).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

Pastor, D.

Paunescu, A.

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Rajhel, A.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
[CrossRef]

Shibata, I.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
[CrossRef]

Shunk, S.

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14(1), 56–58 (2002).
[CrossRef]

Soole, J. B. D.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
[CrossRef]

Sphicopoulos, T.

Stulz, L. W.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15(8), 1088–1090 (2003).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14(1), 56–58 (2002).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

Sugita, A.

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

Takada, K.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
[CrossRef]

Takahashi, H.

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
[CrossRef]

Takato, N.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988).
[CrossRef]

Takenouchi, H.

Tanaka, T.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
[CrossRef]

Toba, H.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988).
[CrossRef]

Tsuda, H.

Uetsuka, H.

Verbeek, B. H.

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
[CrossRef]

Wong-Foy, A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005).
[CrossRef]

Yamada, H.

Yanagisawa, T.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
[CrossRef]

Yariv, A.

Yasu, M.

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988).
[CrossRef]

Electron. Lett. (4)

M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002).
[CrossRef]

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996).
[CrossRef]

K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996).
[CrossRef]

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14(1), 56–58 (2002).
[CrossRef]

C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15(8), 1088–1090 (2003).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006).
[CrossRef]

C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000).
[CrossRef]

J. Lightwave Technol. (8)

N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988).
[CrossRef]

B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988).
[CrossRef]

C. Dragone, “Efficient N x N star couplers using Fourier optics,” J. Lightwave Technol. 7(3), 479–489 (1989).
[CrossRef]

C. Dragone, “Efficient techniques for widening the passband of a wavelength router,” J. Lightwave Technol. 16(10), 1895–1906 (1998).
[CrossRef]

T. Kamalakis and T. Sphicopoulos, “An efficient technique for the design of an arrayed-waveguide grating with flat spectral response,” J. Lightwave Technol. 19(11), 1716–1725 (2001).
[CrossRef]

P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol. 20(4), 661–674 (2002).
[CrossRef]

K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(2), 544–555 (2007).
[CrossRef]

K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(8), 2187–2197 (2007).
[CrossRef]

J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

J. Select. Topics Quantum Electron. (2)

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8(6), 1186–1193 (2002).
[CrossRef]

C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8(6), 1168–1178 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (6)

I. Kaminow, and T. Li, Optical Fiber Telecommunications IVA (Academic Press, San Diego, 2002), pp. 424–427.

G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.

K. Maru, T. Mizumoto, and H. Uetsuka, “Flat-passband arrayed waveguide grating employing cascaded Mach-Zehnder interferometers,” in Proceedings of 11th Optoelectronics and Communications Conf. (OECC2006), 5B2–5.

K. Maru, T. Mizumoto, and H. Uetsuka, “Super-high-Δ silica-based flat-passband filter using AWG and cascaded Mach-Zehnder interferometers,” in Proceedings of 12th Optoelectronics and Communications Conf./16th International Conf. on Integrated Optics and Optical Fiber Communication (OECC/IOOC2007), 12E4–3.

C. K. Madsen, and J. H. Zhao, Optical filter design and analysis (John Willey & Sons, New York, 1999), pp. 171–177.

H. Dym, and H. P. McKean, Fourier series and integrals (Academic Press, New York, 1972), Chap. 1, pp. 31–32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical circuit of flat-passband filter consisting of multiple-input AWG combined with cascaded MZI structure.

Fig. 2
Fig. 2

Calculated performance for the structure without phase compensation for various κL. (a) Spectral response and (b) chromatic dispersion.

Fig. 3
Fig. 3

Phase delay for phase compensation calculated from Eq. (11).

Fig. 4
Fig. 4

Calculated performance for structures with and without phase compensation for κL = 0.2. (a) Spectral response and (b) chromatic dispersion.

Fig. 5
Fig. 5

Calculated performance for structures with and without phase compensation for κL = 0.4. (a) Spectral response and (b) chromatic dispersion.

Fig. 6
Fig. 6

Input waveguide structure with dummy waveguides before input slab.

Fig. 7
Fig. 7

Calculated performance for structures with dummy waveguides with and without phase compensation for κL = 0.2. (a) Spectral response and (b) chromatic dispersion.

Fig. 8
Fig. 8

Calculated performance for structures with dummy waveguides with and without phase compensation for κL = 0.4. (a) Spectral response and (b) chromatic dispersion.

Tables (1)

Tables Icon

Table 1 Design parameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

u i n ( x x m ) = j δ u i n o ( x x m + Δ x ) + χ u i n o ( x x m ) j δ u i n o ( x x m Δ x ) ,
L i = L 0 i Δ L + l i ,
θ i = 2 π n a l i λ 0 ,
Θ ( y ) = i = e j θ i e j 2 π i y Δ y ,
t ( y n ; f ) Δ y 2 f b ( y n ) [ u i n ( y n ) Θ ( y n ) u o u t * ( y n ) E o ( y n ; f ) ] ,
E o ( y ; f ) = m = 0 M 1 f a ( x m ) E ( x m ; f ) D 2 I + 1 ( f Δ f F S R + x m + y Δ y ) ,
g 1 ( y ) g 2 ( y ) = 1 Δ y Δ y / 2 Δ y / 2 g 1 ( τ ) g 2 ( y τ ) d τ .
u i n ( y n ) Θ ( y n ) 1 Δ y i = U i n ( i d ) e j θ i e j 2 π i y Δ y ,
U i n ( i d ) = u i n ( x ) e j k i d x z d x .
U i n ( i d ) = U i n o ( i d ) χ 2 + 4 δ 2 cos 2 ( 2 π i Δ x Δ y ) exp { j tan 1 [ 2 δ cos ( 2 π i Δ x Δ y ) χ ] } ,
θ i = tan 1 [ 2 δ cos ( 2 π i Δ x Δ y ) χ ] + θ ,
E ( x m ; f ) = e j ( M 1 ) π ( f Δ f M Z I + x 0 + y n M Δ x ) + j φ ˜ M D M ( f Δ f M Z I + x 0 + y n M Δ x + m M ) ,
[ E ( x 0 ; f ) E ( x 1 ; f ) E ( x M 1 ; f ) ] = T [ E ( x 0 ; f ) E ( x 1 ; f ) E ( x M 1 ; f ) ] ,
t 00 = t 33 = 2 p [ sin 2 ( π 5 ) cos ( 2 κ L cos ( π 5 ) ) + sin 2 ( 2 π 5 ) cos ( 2 κ L cos ( 2 π 5 ) ) ] ,
t 11 = t 22 = 2 p [ sin 2 ( 2 π 5 ) cos ( 2 κ L cos ( π 5 ) ) + sin 2 ( π 5 ) cos ( 2 κ L cos ( 2 π 5 ) ) ] ,
t 01 = t 10 = t 23 = t 32 = j 2 p sin ( π 5 ) sin ( 2 π 5 ) [ sin ( 2 κ L cos ( π 5 ) ) + sin ( 2 κ L cos ( 2 π 5 ) ) ] ,
t 12 = t 21 = j 2 p [ sin 2 ( 2 π 5 ) sin ( 2 κ L cos ( π 5 ) ) sin 2 ( π 5 ) sin ( 2 κ L cos ( 2 π 5 ) ) ] ,
t 02 = t 20 = t 13 = t 31 = 2 p sin ( π 5 ) sin ( 2 π 5 ) [ cos ( 2 κ L cos ( 2 π 5 ) ) cos ( 2 κ L cos ( π 5 ) ) ] ,
t 03 = t 30 = j 2 p [ sin 2 ( 2 π 5 ) sin ( 2 κ L cos ( 2 π 5 ) ) sin 2 ( π 5 ) sin ( 2 κ L cos ( π 5 ) ) ] ,
p = 2 [ sin 2 ( π 5 ) + sin 2 ( 2 π 5 ) ] .
T = e j β L [ 1 j κ L 0 0 j κ L 1 j κ L 0 0 j κ L 1 j κ L 0 0 j κ L 1 ] .
[ E ( x 1 ; f ) E ( x 0 ; f ) E ( x M 1 ; f ) E ( x M ; f ) ] = T [ E ( x 0 ; f ) E ( x 1 ; f ) E ( x M 1 ; f ) ] ,
T = e j β L [ j κ L 0 0 0 1 j κ L 0 0 j κ L 1 j κ L 0 0 j κ L 1 j κ L 0 0 j κ L 1 0 0 0 j κ L ] .
2 I P + 1 = Δ y Δ x .
u i n o ( y ) u o u t ( y ) = η e ( y w u ) 2 ,

Metrics