Abstract

We develop an interferometer which has high spectral sensitivity based on the dispersive property of the semiconductor GaAs in the near-infrared region. Our experiment demonstrates that the spectral sensitivity could be greatly enhanced by adding a slow light medium into the interferometer and is proportional to the group index of the material. Subsequently the factors which influence the spectral sensitivity of the interferometer are analyzed. Moreover, we provide potential applications of such interferometers using the dispersive property of semiconductor in whole infrared region.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
    [CrossRef] [PubMed]
  2. M. Chamanzar, B. Momeni, and A. Adibi, “Compact on-chip interferometers with high spectral sensitivity,” Opt. Lett. 34(2), 220–222 (2009).
    [CrossRef] [PubMed]
  3. D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
    [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  6. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor,” Phys. Rev. A 86, 783–786 (2001).
  7. R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13(20), 7861–7871 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-20-7861 .
    [CrossRef] [PubMed]
  8. Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
    [CrossRef] [PubMed]
  9. G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac Interferometry in a slow-light medium,” Phys. Rev. A 74(2), 023805 (2006).
    [CrossRef]
  10. B. Jensen and A. Torabi, “Refractive index of hexagonal II–VI compounds CdSe, CdS, and CdSexS1−x,” J. Opt. Soc. Am. B 3(6), 857–863 (1986).
    [CrossRef]
  11. P. Hariharan, Optical Interferometry Second Edition.(Elsevier Science Inc., 2003)
  12. S. Kayali, G. Ponchak, and R. Shaw, GaAs MMIC Reliability Assurance Guideline, (JPL Publication 96–25), http://parts.jpl.nasa.gov/mmic/contents.htm
  13. B. Jensen, and A. Torabi, “Dispersion of the Refractive Index of GaAs and AlxGa1-xAs”, IEEE JQE 19 (5), 877–882 (1983)
  14. R. W. Boyd, Nonlinear optics Second Edition. (Elsevier Science Inc., 2003)
  15. W. Demtröder, Laser Spectroscopy:Basic Concepts and Instrumentation(Springer-Verlag,1982)
  16. K. D. Möller, Optics: learning by Computing, with Moder Examples Using MathCad, MATLAB, Mathcematica, and Maple, Second Edition (Springer Science-Business Media, LLC, 2007)
  17. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
    [CrossRef]
  18. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
    [CrossRef] [PubMed]
  19. M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127(3), 768–773 (1962).
    [CrossRef]

2009

M. Chamanzar, B. Momeni, and A. Adibi, “Compact on-chip interferometers with high spectral sensitivity,” Opt. Lett. 34(2), 220–222 (2009).
[CrossRef] [PubMed]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[CrossRef]

2007

Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[CrossRef] [PubMed]

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef] [PubMed]

2006

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac Interferometry in a slow-light medium,” Phys. Rev. A 74(2), 023805 (2006).
[CrossRef]

2005

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

2001

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor,” Phys. Rev. A 86, 783–786 (2001).

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1986

B. Jensen and A. Torabi, “Refractive index of hexagonal II–VI compounds CdSe, CdS, and CdSexS1−x,” J. Opt. Soc. Am. B 3(6), 857–863 (1986).
[CrossRef]

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

1962

M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127(3), 768–773 (1962).
[CrossRef]

Adams, C. S.

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac Interferometry in a slow-light medium,” Phys. Rev. A 74(2), 023805 (2006).
[CrossRef]

Adibi, A.

Banyai, L.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Borel, P.

Boyd, R. W.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef] [PubMed]

Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Camacho, R. M.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef] [PubMed]

Chamanzar, M.

Chavez-Pirson, A.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Diels, J. C.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[CrossRef]

Dudley, C. C.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Fage-Pedersen, J.

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor,” Phys. Rev. A 86, 783–786 (2001).

Frandsen, L.

Gauthier, D. J.

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Gibbs, H. M.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Gossard, A. C.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Howell, J. C.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef] [PubMed]

Hughes, I. G.

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac Interferometry in a slow-light medium,” Phys. Rev. A 74(2), 023805 (2006).
[CrossRef]

Jacobsen, R.

Jeffery, A.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Jensen, B.

Koch, S. W.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Lavrinenko, A.

Lee, Y. H.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor,” Phys. Rev. A 86, 783–786 (2001).

Momeni, B.

Morhange, J.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Moulin, G.

Myneni, K.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[CrossRef]

Odutola, J. A.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[CrossRef]

Park, S. H.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Peucheret, C.

Peyghambarian, N.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor,” Phys. Rev. A 86, 783–786 (2001).

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Purves, G. T.

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac Interferometry in a slow-light medium,” Phys. Rev. A 74(2), 023805 (2006).
[CrossRef]

Shi, Z. M.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef] [PubMed]

Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
[CrossRef] [PubMed]

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Smith, D. D.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[CrossRef]

Sturge, M. D.

M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127(3), 768–773 (1962).
[CrossRef]

Torabi, A.

Vodopyanov, K. L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

Vudyasetu, P. K.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef] [PubMed]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor,” Phys. Rev. A 86, 783–786 (2001).

Wiegmann, W.

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Zsigri, B.

J. Appl. Phys.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127(3), 768–773 (1962).
[CrossRef]

Phys. Rev. A

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor,” Phys. Rev. A 86, 783–786 (2001).

G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac Interferometry in a slow-light medium,” Phys. Rev. A 74(2), 023805 (2006).
[CrossRef]

Phys. Rev. Lett.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986).
[CrossRef] [PubMed]

Other

P. Hariharan, Optical Interferometry Second Edition.(Elsevier Science Inc., 2003)

S. Kayali, G. Ponchak, and R. Shaw, GaAs MMIC Reliability Assurance Guideline, (JPL Publication 96–25), http://parts.jpl.nasa.gov/mmic/contents.htm

B. Jensen, and A. Torabi, “Dispersion of the Refractive Index of GaAs and AlxGa1-xAs”, IEEE JQE 19 (5), 877–882 (1983)

R. W. Boyd, Nonlinear optics Second Edition. (Elsevier Science Inc., 2003)

W. Demtröder, Laser Spectroscopy:Basic Concepts and Instrumentation(Springer-Verlag,1982)

K. D. Möller, Optics: learning by Computing, with Moder Examples Using MathCad, MATLAB, Mathcematica, and Maple, Second Edition (Springer Science-Business Media, LLC, 2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Multiple-beam interference in a wedged plate

Fig. 2
Fig. 2

(a) The calculation of GaAs refractive index, (b) The calculation of GaAs group index, (c) The refractive index and group index from 895 nm to 910 nm, (d) The transmittance of GaAs as the thickness is 900 μm and the wedge angle is 0.7°.

Fig. 4
Fig. 4

The rate of fringe movement as a function of wavelength: the squares denote the experimental date with standard deviation bars, and the red solid and dotted line are the theoretical simulations.

Fig. 3
Fig. 3

Schematic diagram of wedge shear slow light interferometer

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I t ( y , λ ) = I 0 T 2 T L ( 1 R T L ) 2 1 [ 1 + F sin 2 ( Δ ϕ ( y , λ ) ) ]
S d I t d λ
S= d y m d λ = ( m π ϕ 0 ) 2 π n 2 θ n g
1 Δ y d y m d λ = ( m π ϕ 0 ) π n λ n g 2 L 0 λ 2 n g
n ( a ) = n ( 0 ) [ c 0 a / n ( 0 ) ] [ π / 2 c 1 tan 1 ( y / a ) ]

Metrics