Abstract

A simple expression for the magnetic filed of a highly focused radially polarized light is derived and the incorrect results for the time averaged Poynting vector and the trapping stability for a gold particle presented in the paper “Trapping metallic Rayleigh particles with radial polarization” by Zhan (Opt. Express 12, 3377–3382 (2004)) are corrected.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Trapping metallic Rayleigh particles with radial polarization

Qiwen Zhan
Opt. Express 12(15) 3377-3382 (2004)

Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams

Manman Li, Shaohui Yan, Baoli Yao, Ming Lei, Yanlong Yang, Junwei Min, and Dan Dan
J. Opt. Soc. Am. B 32(3) 468-472 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  4. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
    [Crossref]
  5. Y. Zhang and J. Bai, “Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams,” Opt. Express 17(5), 3698–3706 (2009).
    [Crossref] [PubMed]
  6. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [Crossref]
  7. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
    [Crossref] [PubMed]
  8. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  9. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
    [Crossref]
  10. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
    [Crossref]

2009 (1)

2007 (1)

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2001 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

2000 (1)

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
[Crossref]

1993 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
[Crossref]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
[Crossref]

Bai, J.

Brown, T. G.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
[Crossref]

Kim, G. H.

Kimura, W. D.

Kozawa, Y.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
[Crossref]

Sato, S.

Tidwell, S. C.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
[Crossref]

Youngworth, K. S.

Zhan, Q.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Opt. Commun. (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Ray-tracing model for focusing a radially polarized incoming light

Fig. 2
Fig. 2

The time averaged Poynting vector based on the exact magnetic field near the focal region of a highly focused radial polarized light beam. (a) 2-dimensional distribution in the xz plane; (b) line scan of (a) at the focal plane.

Fig. 3
Fig. 3

Calculated radiation forces on a 19.1 nm (radius) gold particle in the xz plane. (a) Transverse gradient force (Fgrad,x); (b) axial gradient force (Fgrad,z); (c) sum of transverse scattering and absorption forces (Fscat,x + Fabs,x); (d) sum of axial scattering and absorption forces (Fscat,z + Fabs,z). All radiation forces are in unit of pico-Newton (pN).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E = i k f 2 π 0 α d θ 0 2 π d ϕ sin θ cos θ A ( θ ) P e ( θ , ϕ ) exp [ i k r sin θ cos ( ϕ φ ) ] exp ( i k z cos θ ) ,
P e = [ cos θ cos ϕ cos θ sin ϕ sin θ ] .
E r ( r , z ) = η 0 α cos θ A ( θ ) sin 2 θ J 1 ( k r sin θ ) exp ( i k z cos θ ) d θ ,
E z ( r , z ) = 2 i η 0 α cos θ A ( θ ) sin 2 θ J 0 ( k r sin θ ) exp ( i k z cos θ ) d θ ,
H = i η n π μ 0 c 0 α d θ 0 2 π d ϕ cos θ sin θ A ( θ ) P m ( θ , ϕ ) exp [ i k r sin θ cos ( ϕ φ ) ] exp ( i k z cos θ ) ,
P m = [ sin ϕ cos ϕ 0 ] .
H ( r , z ) = H ϕ ( r , z ) e ^ ϕ = 2 η n μ 0 c 0 α cos θ A ( θ ) ) sin θ J 1 ( k r sin θ ) exp ( i k z cos θ ) d θ e ^ ϕ .
< S > = Re ( E × H * ) / 2 = Re ( E r H ϕ * ) e ^ z / 2 Re ( E z H ϕ * ) e ^ ρ / 2.
A ( θ ) = { E 0 , sin 1 ( NA 1 ) < θ < sin 1 ( NA / n ) 0 , otherwise
R = ( F grad , z ) max / [ ( F scat , z ) max + ( F abs , z ) max ] .

Metrics