Abstract

We proposed and experimentally demonstrated an extremely simple and feasible slow-light technique to achieve tunable optical delay by using the Er/Yb codoped fiber Bragg grating (FBG). The signal light experiences strong dispersion when it is launched into the reflection edge of FBG, and the group delay value is determined by the signal wavelength and the pump power. In the experiment, a controllable delay of 0.9 ns can be obtained through changing the 980nm pump power. The group velocity can be slowed down to 5.6×107 m/s, which is 19% of the speed of light in free space. It provides a very simple approach to control the light group delay, which is likely to have important implications for practical applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  4. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [CrossRef] [PubMed]
  5. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
    [CrossRef]
  6. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [CrossRef] [PubMed]
  7. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [CrossRef] [PubMed]
  8. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
    [CrossRef] [PubMed]
  9. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
    [CrossRef] [PubMed]
  10. M. P. Fok and C. Shu, “Tunable optical delay using four-wave mixing in a 35-cm highly nonlinear Bismuth-Oxide fiber and group velocity dispersion,” J. Lightwave Technol. 26(5), 499–504 (2008).
    [CrossRef]
  11. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [CrossRef] [PubMed]
  12. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  13. L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [CrossRef]
  14. L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
    [CrossRef]
  15. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” presented at the Optical Fiber Commun. Conf., Anaheim, CA, 2006, Paper PDP1.
  16. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32(3), 217–219 (2007).
    [CrossRef] [PubMed]
  17. L. Yi, L. Zhan, W. Hu, and Y. Xia, “Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,” IEEE Photon. Technol. Lett. 19(8), 619–621 (2007).
    [CrossRef]
  18. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
    [CrossRef]
  19. D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005).
    [CrossRef] [PubMed]
  20. J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
    [CrossRef]
  21. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  22. D. J. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).
  23. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
    [CrossRef]
  24. G. A. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
    [CrossRef]
  25. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [CrossRef]
  26. C. Thirstrup, Y. Shi, and B. Palsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fiber,” J. Lightwave Technol. 14(5), 732–738 (1996).
    [CrossRef]
  27. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
    [CrossRef]

2008 (3)

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[CrossRef]

M. P. Fok and C. Shu, “Tunable optical delay using four-wave mixing in a 35-cm highly nonlinear Bismuth-Oxide fiber and group velocity dispersion,” J. Lightwave Technol. 26(5), 499–504 (2008).
[CrossRef]

2007 (2)

K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32(3), 217–219 (2007).
[CrossRef] [PubMed]

L. Yi, L. Zhan, W. Hu, and Y. Xia, “Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,” IEEE Photon. Technol. Lett. 19(8), 619–621 (2007).
[CrossRef]

2006 (3)

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[CrossRef]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[CrossRef]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

2005 (7)

2004 (1)

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef] [PubMed]

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[CrossRef]

1996 (1)

C. Thirstrup, Y. Shi, and B. Palsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fiber,” J. Lightwave Technol. 14(5), 732–738 (1996).
[CrossRef]

1994 (1)

G. A. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Ball, G. A.

G. A. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Belmonte, M.

D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005).
[CrossRef] [PubMed]

Bigelow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[CrossRef]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Chang, S. W.

Chang-Hasnain, C. J.

Chuang, S.-L.

Dahan, D.

De Sterke, C. M.

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Eggleton, B. J.

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Eisenstein, G.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Fok, M. P.

Gaeta, A.

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Galzerano, G.

D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

D. J. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[CrossRef]

Glenn, W. H.

G. A. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Herráez, M. G.

Hotate, K.

Hu, W.

L. Yi, L. Zhan, W. Hu, and Y. Xia, “Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,” IEEE Photon. Technol. Lett. 19(8), 619–621 (2007).
[CrossRef]

Janner, D.

D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005).
[CrossRef] [PubMed]

Jarabo, S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Ku, P. C.

Laporta, P.

D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005).
[CrossRef] [PubMed]

Lee, R. K.

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Li, T.

Littler, I. C. M.

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[CrossRef]

Longhi, S.

D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005).
[CrossRef] [PubMed]

Luo, S.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Mok, J. T.

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[CrossRef]

Morey, W. W.

G. A. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

Okawachi, Y.

Palinginis, P.

Palsdottir, B.

C. Thirstrup, Y. Shi, and B. Palsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fiber,” J. Lightwave Technol. 14(5), 732–738 (1996).
[CrossRef]

Scherer, A.

Schweinsberg, A.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Sedgwick, F.

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Sharping, J.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Shi, Y.

C. Thirstrup, Y. Shi, and B. Palsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fiber,” J. Lightwave Technol. 14(5), 732–738 (1996).
[CrossRef]

Shu, C.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Song, K. Y.

Thevenaz, L.

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

Thévenaz, L.

Thirstrup, C.

C. Thirstrup, Y. Shi, and B. Palsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fiber,” J. Lightwave Technol. 14(5), 732–738 (1996).
[CrossRef]

Valle, G. D.

D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005).
[CrossRef] [PubMed]

van Howe, J.

Wang, H.

Wang, Y.

Willner, A.

Xia, Y.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[CrossRef]

L. Yi, L. Zhan, W. Hu, and Y. Xia, “Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,” IEEE Photon. Technol. Lett. 19(8), 619–621 (2007).
[CrossRef]

Xing, L.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[CrossRef]

Xu, C.

Xu, Y.

Yariv, A.

Yi, L.

L. Yi, L. Zhan, W. Hu, and Y. Xia, “Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,” IEEE Photon. Technol. Lett. 19(8), 619–621 (2007).
[CrossRef]

Zhan, L.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[CrossRef]

L. Yi, L. Zhan, W. Hu, and Y. Xia, “Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,” IEEE Photon. Technol. Lett. 19(8), 619–621 (2007).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Europhys. Lett. (1)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. A. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

L. Yi, L. Zhan, W. Hu, and Y. Xia, “Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,” IEEE Photon. Technol. Lett. 19(8), 619–621 (2007).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

J. Lightwave Technol. (4)

C. Thirstrup, Y. Shi, and B. Palsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fiber,” J. Lightwave Technol. 14(5), 732–738 (1996).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

M. P. Fok and C. Shu, “Tunable optical delay using four-wave mixing in a 35-cm highly nonlinear Bismuth-Oxide fiber and group velocity dispersion,” J. Lightwave Technol. 26(5), 499–504 (2008).
[CrossRef]

Nat. Photonics (1)

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

Nat. Phys. (1)

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Photonics News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Phys. World (1)

D. J. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Other (1)

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” presented at the Optical Fiber Commun. Conf., Anaheim, CA, 2006, Paper PDP1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated reflection spectrum (solid line) and group delay (dash dot line) in FBG.

Fig. 2
Fig. 2

Experimental setup: TLS, tunable laser source; PC, polarization controller; EOM, electrooptic modulator; WDM, 980 nm/ 1550 nm wavelength division multiplexer.

Fig. 3
Fig. 3

Measured reflection spectra of the FBG at different pump powers.

Fig. 4
Fig. 4

Delayed pulse obtained by varying the signal wavelength when pump power is (a) 0 mW (b) 160 mW.

Fig. 5
Fig. 5

Observation of delay or advancement with different pump powers when the signal wavelength is at 1545.704 nm.

Fig. 6
Fig. 6

Calculated delay spectrum shift for the FBG with different 980 nm pump powers. The inset illustrates the details of the delay varying with the reflection spectrum shift.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ = κ sinh ( κ 2 σ ^ 2 L ) σ sinh ( κ 2 σ ^ 2 L ) + i κ 2 σ ^ 2 cosh ( κ 2 σ ^ 2 L ) ,
τ = λ 2 2 π c d φ d λ ,
φ = a tan [ κ 2 σ ^ 2 σ ^ coth ( κ 2 σ ^ 2 L ) ] .

Metrics