Abstract

The concept of optical beam self-trapping in pyroelectric photorefractive medium is presented. We show that the temperature controlled spontaneous polarisation of ferroelectric crystals produces an optical nonlinearity that can lead to formation of 2-D spatial soliton named pyroliton. Experimental demonstrations performed in lithium niobate crystals illustrate that efficient self-trapping occurs either for ordinary or extraordinary polarisation under moderate temperature increase. For instance, a 15µm diameter pyroliton can be formed with a 10 degree temperature raise.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13(15), 479–482 (1964).
    [CrossRef]
  2. A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55(3), 201–206 (1985).
    [CrossRef]
  3. K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71(20), 3275–3278 (1993).
    [CrossRef] [PubMed]
  4. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
    [CrossRef]
  5. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
    [CrossRef] [PubMed]
  6. A. D. Boardman, and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer Acad. Publ., Dordrecht, 2001).
  7. S. Trillo, and W. E. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).
  8. M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
    [CrossRef] [PubMed]
  9. M. Morin, G. C. Duree, G. J. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20(20), 2066–2068 (1995).
    [CrossRef] [PubMed]
  10. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28(9), 710–712 (2003).
    [CrossRef] [PubMed]
  11. W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
    [CrossRef]
  12. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
    [CrossRef]
  13. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995).
    [CrossRef] [PubMed]
  14. W. L. She, K. K. Lee, and W. K. Lee, “Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons,” Phys. Rev. Lett. 83(16), 3182–3185 (1999).
    [CrossRef]
  15. C. Anastassiou, M. F. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23(12), 924–926 (1998).
    [CrossRef] [PubMed]
  16. J. D. Brownridge, “Pyroelectric x-ray generator,” Nature 358(6384), 277–278 (1992).
    [CrossRef] [PubMed]
  17. J. Geuther, Y. Danon, and F. Saglime, “Nuclear Reactions Induced by a Pyroelectric Accelerator,” Phys. Rev. Lett. 96(5), 054803–054806 (2006).
    [CrossRef] [PubMed]
  18. S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104–114114 (2008).
    [CrossRef]
  19. P. Günter, and J. P. Huignard, Photorefractive materials and their applications 2 (Springer, Berlin, 2007).
  20. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25(6), 1081–1086 (2008).
    [CrossRef]
  21. T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, “Pyroelectric Coefficients of LiNbO3 Crystals of Different Compositions,” Phys. Status Solidi 142(1), K55–K57 (1994) (a).
    [CrossRef]
  22. A. Savage, “Visual system-response functions and estimating reflectance,” J. Appl. Phys. 37, 3071 (1966).
    [CrossRef]
  23. M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
    [CrossRef]
  24. J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive liNbO3,” J. Opt. Soc. Am. B 26(3), 487–492 (2009).
    [CrossRef]
  25. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
    [CrossRef] [PubMed]
  26. G. Montemezzani, C. Medrano, and P. Günter, “Charge carrier photoexcitation and two-wave mixing in dichroic materials,” Phys. Rev. Lett. 79(18), 3403–3406 (1997).
    [CrossRef]

2009 (1)

2008 (2)

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25(6), 1081–1086 (2008).
[CrossRef]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104–114114 (2008).
[CrossRef]

2006 (1)

J. Geuther, Y. Danon, and F. Saglime, “Nuclear Reactions Induced by a Pyroelectric Accelerator,” Phys. Rev. Lett. 96(5), 054803–054806 (2006).
[CrossRef] [PubMed]

2004 (1)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

2003 (1)

2000 (1)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[CrossRef]

1999 (1)

W. L. She, K. K. Lee, and W. K. Lee, “Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons,” Phys. Rev. Lett. 83(16), 3182–3185 (1999).
[CrossRef]

1998 (2)

W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

C. Anastassiou, M. F. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23(12), 924–926 (1998).
[CrossRef] [PubMed]

1997 (2)

G. Montemezzani, C. Medrano, and P. Günter, “Charge carrier photoexcitation and two-wave mixing in dichroic materials,” Phys. Rev. Lett. 79(18), 3403–3406 (1997).
[CrossRef]

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

1995 (3)

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995).
[CrossRef] [PubMed]

M. Morin, G. C. Duree, G. J. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20(20), 2066–2068 (1995).
[CrossRef] [PubMed]

1994 (2)

M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, “Pyroelectric Coefficients of LiNbO3 Crystals of Different Compositions,” Phys. Status Solidi 142(1), K55–K57 (1994) (a).
[CrossRef]

1993 (2)

K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71(20), 3275–3278 (1993).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

1992 (1)

J. D. Brownridge, “Pyroelectric x-ray generator,” Nature 358(6384), 277–278 (1992).
[CrossRef] [PubMed]

1985 (1)

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

1966 (1)

A. Savage, “Visual system-response functions and estimating reflectance,” J. Appl. Phys. 37, 3071 (1966).
[CrossRef]

1964 (1)

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13(15), 479–482 (1964).
[CrossRef]

Aillerie, M.

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104–114114 (2008).
[CrossRef]

Alonzo, M.

Anastassiou, C.

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

Assanto, G.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[CrossRef]

Barthélémy, A.

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Bartholomaüs, T.

T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, “Pyroelectric Coefficients of LiNbO3 Crystals of Different Compositions,” Phys. Status Solidi 142(1), K55–K57 (1994) (a).
[CrossRef]

Bashaw, M. C.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995).
[CrossRef] [PubMed]

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

Bourson, P.

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104–114114 (2008).
[CrossRef]

Brownridge, J. D.

J. D. Brownridge, “Pyroelectric x-ray generator,” Nature 358(6384), 277–278 (1992).
[CrossRef] [PubMed]

Buse, K.

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, “Pyroelectric Coefficients of LiNbO3 Crystals of Different Compositions,” Phys. Status Solidi 142(1), K55–K57 (1994) (a).
[CrossRef]

Chauvet, M.

Chen, Z.

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13(15), 479–482 (1964).
[CrossRef]

Coda, V.

Crosignani, B.

M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Danon, Y.

J. Geuther, Y. Danon, and F. Saglime, “Nuclear Reactions Induced by a Pyroelectric Accelerator,” Phys. Rev. Lett. 96(5), 054803–054806 (2006).
[CrossRef] [PubMed]

De Luca, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[CrossRef]

De Rossi, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[CrossRef]

Denz, C.

W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

Deuper, C.

T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, “Pyroelectric Coefficients of LiNbO3 Crystals of Different Compositions,” Phys. Status Solidi 142(1), K55–K57 (1994) (a).
[CrossRef]

Devaux, F.

Di porto, P.

M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Duree, G. C.

M. Morin, G. C. Duree, G. J. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20(20), 2066–2068 (1995).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Fazio, E.

J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive liNbO3,” J. Opt. Soc. Am. B 26(3), 487–492 (2009).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

Fejer, M. M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995).
[CrossRef] [PubMed]

Froehly, C.

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13(15), 479–482 (1964).
[CrossRef]

Geuther, J.

J. Geuther, Y. Danon, and F. Saglime, “Nuclear Reactions Induced by a Pyroelectric Accelerator,” Phys. Rev. Lett. 96(5), 054803–054806 (2006).
[CrossRef] [PubMed]

Günter, P.

G. Montemezzani, C. Medrano, and P. Günter, “Charge carrier photoexcitation and two-wave mixing in dichroic materials,” Phys. Rev. Lett. 79(18), 3403–3406 (1997).
[CrossRef]

Hayata, K.

K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71(20), 3275–3278 (1993).
[CrossRef] [PubMed]

Khoo, I. C.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[CrossRef]

Kivshar, Y.

Koshiba, M.

K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71(20), 3275–3278 (1993).
[CrossRef] [PubMed]

Kostritskii, S. M.

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104–114114 (2008).
[CrossRef]

Krätzig, E.

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, “Pyroelectric Coefficients of LiNbO3 Crystals of Different Compositions,” Phys. Status Solidi 142(1), K55–K57 (1994) (a).
[CrossRef]

Królikowsk, W.

W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

Krolikowski, W.

Lee, K. K.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons,” Phys. Rev. Lett. 83(16), 3182–3185 (1999).
[CrossRef]

Lee, W. K.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons,” Phys. Rev. Lett. 83(16), 3182–3185 (1999).
[CrossRef]

Luther-Davies, B.

W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

Maneuf, S.

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Medrano, C.

G. Montemezzani, C. Medrano, and P. Günter, “Charge carrier photoexcitation and two-wave mixing in dichroic materials,” Phys. Rev. Lett. 79(18), 3403–3406 (1997).
[CrossRef]

Mitchell, M.

Montemezzani, G.

G. Montemezzani, C. Medrano, and P. Günter, “Charge carrier photoexcitation and two-wave mixing in dichroic materials,” Phys. Rev. Lett. 79(18), 3403–3406 (1997).
[CrossRef]

Morin, M.

Neshev, D.

Neurgaonkar, R. R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Ostrovskaya, E.

Passier, R.

Peccianti, M.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[CrossRef]

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

Pettazzi, F.

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

Saffman, M.

W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

Safioui, J.

Saglime, F.

J. Geuther, Y. Danon, and F. Saglime, “Nuclear Reactions Induced by a Pyroelectric Accelerator,” Phys. Rev. Lett. 96(5), 054803–054806 (2006).
[CrossRef] [PubMed]

Salamo, G. J.

M. Morin, G. C. Duree, G. J. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20(20), 2066–2068 (1995).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Savage, A.

A. Savage, “Visual system-response functions and estimating reflectance,” J. Appl. Phys. 37, 3071 (1966).
[CrossRef]

Segev, M.

C. Anastassiou, M. F. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23(12), 924–926 (1998).
[CrossRef] [PubMed]

M. Morin, G. C. Duree, G. J. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20(20), 2066–2068 (1995).
[CrossRef] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Sevostyanov, O. G.

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104–114114 (2008).
[CrossRef]

Sharp, E. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

She, W. L.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons,” Phys. Rev. Lett. 83(16), 3182–3185 (1999).
[CrossRef]

Shih, M. F.

Shultz, J. L.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Simon, M.

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

Taya, M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995).
[CrossRef] [PubMed]

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13(15), 479–482 (1964).
[CrossRef]

Umeton, C.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[CrossRef]

Valley, G. C.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

Wevering, S.

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

Yariv, A.

M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004).
[CrossRef]

J. Appl. Phys. (2)

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104–114114 (2008).
[CrossRef]

A. Savage, “Visual system-response functions and estimating reflectance,” J. Appl. Phys. 37, 3071 (1966).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

Nature (1)

J. D. Brownridge, “Pyroelectric x-ray generator,” Nature 358(6384), 277–278 (1992).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (2)

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
[CrossRef] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (8)

W. L. She, K. K. Lee, and W. K. Lee, “Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons,” Phys. Rev. Lett. 83(16), 3182–3185 (1999).
[CrossRef]

W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998).
[CrossRef]

J. Geuther, Y. Danon, and F. Saglime, “Nuclear Reactions Induced by a Pyroelectric Accelerator,” Phys. Rev. Lett. 96(5), 054803–054806 (2006).
[CrossRef] [PubMed]

K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71(20), 3275–3278 (1993).
[CrossRef] [PubMed]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13(15), 479–482 (1964).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993).
[CrossRef] [PubMed]

G. Montemezzani, C. Medrano, and P. Günter, “Charge carrier photoexcitation and two-wave mixing in dichroic materials,” Phys. Rev. Lett. 79(18), 3403–3406 (1997).
[CrossRef]

Phys. Status Solidi (1)

T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, “Pyroelectric Coefficients of LiNbO3 Crystals of Different Compositions,” Phys. Status Solidi 142(1), K55–K57 (1994) (a).
[CrossRef]

Other (3)

A. D. Boardman, and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer Acad. Publ., Dordrecht, 2001).

S. Trillo, and W. E. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).

P. Günter, and J. P. Huignard, Photorefractive materials and their applications 2 (Springer, Berlin, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Numerical calculation of pyroelectric beam self-trapping for an extraordinary polarised beam in a 20 mm long crystal. Intensity distribution at the input face (a), output face in linear regime (b), output face in nonlinear regime at t=tF for best focusing (d) and at t=tF/2 (c). Corresponding z-component of the electric field distribution normalized to Epy at exit face at t=tF. Parameters: 80µw beam power, 16µm input beam FWHM, DT=10°C, Eph =19kV/cm.

Fig. 2
Fig. 2

Pyroelectric self-focusing dynamics of an extraordinary polarized beam at λ=532 nm in a 20mm long stoichiometric LiNbO3 crystal. Crystal temperature evolution (curve) and images at the input face (a) and at the output face at different instant indicated on the curve (b-f). Parameters: 80µW input beam power, 11 µm input beam FWHM.

Fig. 3
Fig. 3

Beam FWHM perpendicular (crosses) and along c-axis (circles) at the output face of a 20mm long congruent LiNbO3 crystal as a function of temperature increase. Parameters: 30µW input beam power, 12 µm input beam FWHM, 273K initial temperature, extraordinary polarisation, λ=532 nm

Fig. 4
Fig. 4

Pyroelectric self-trapping in a 20 mm long congruent LiNbO3 sample for ordinary and extraordinary polarised beams. Image at the entrance face (a), at the exit face in diffraction regime (b) and in nonlinear regime with ordinary (tF=9min) (c) or extraordinary (tF=3min) (d) polarisations. Parameters: 80µW input beam power, 15µm input beam FWHM, ΔT=20°C.

Fig. 5
Fig. 5

Experimental demonstration of a pyroliton in LiNbO3. Input (a) and output (b) beam intensity distribution. Parameters: 80µW input beam power, 15µm beam FWHM, ΔT=10°C.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E p y = Δ E = 1 ε 0 ε r p Δ T .
ρ t = μ e ( N . E ) β p h [ ( N d N d + ) I ] c .
N = s ( I + I d ) ( N d N d + ) γ N d + .
N d + = N a + ρ e .
E ( r ) = E p y . c + 1 4 π ε 0 ε r V ρ ( r ' ) r r ' | r r ' | 3 d V .
{ y i 2 k Δ } A = i k Δ n A .

Metrics