Abstract

Optoelectronic-compatible heterostructures are fabricated from layered inorganic-organic multiple quantum wells (IO-MQW) of Cyclohexenyl ethyl ammonium lead iodide, (C6H9C2H4NH3)2PbI4 (CHPI). These hybrids possess strongly-resonant optical features, are thermally stable and compatible with hybrid photonics assembly. Room-temperature strong-coupling is observed when these hybrids are straightforwardly embedded in metal-air (M-A) and metal-metal (M-M) low-Q microcavities, due to the large oscillator strength of these IO-MQWs. The strength of the Rabi splitting is 130meV for M-A and 160meV for M-M cavities. These values are significantly higher than for J-aggregates in all-metal microcavities of similar length. These experimental results are in good agreement with transfer matrix simulations based on resonant excitons. Incorporating exciton-switching hybrids allows active control of the strong-coupling parameters by temperature, suggesting new device applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [CrossRef]
  2. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009).
    [CrossRef]
  3. M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007).
    [CrossRef]
  4. P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
    [CrossRef]
  5. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
    [CrossRef]
  6. R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000).
    [CrossRef]
  7. C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
    [CrossRef] [PubMed]
  8. D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
    [CrossRef]
  9. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
    [CrossRef] [PubMed]
  10. M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
    [CrossRef]
  11. S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
    [CrossRef] [PubMed]
  12. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  13. P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
    [CrossRef] [PubMed]
  14. D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002).
    [CrossRef]
  15. S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 (2008).
    [CrossRef] [PubMed]
  16. C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 (2005).
    [CrossRef]
  17. M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994).
    [CrossRef]
  18. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
    [CrossRef] [PubMed]
  19. T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999).
    [CrossRef]
  20. G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
    [CrossRef]
  21. S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
    [CrossRef]
  22. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 (2009).
    [CrossRef]
  23. T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 (1990).
    [CrossRef]
  24. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
    [CrossRef]
  25. G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
    [CrossRef]
  26. K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 (2001).
    [CrossRef]
  27. D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 (2008).
    [CrossRef]
  28. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Exciton Switching and Peierls Transitions in Hybrid Inorganic-Organic Self-Assembled Quantum Wells,” Communicated (2009).

2009 (5)

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009).
[CrossRef]

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
[CrossRef]

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 (2009).
[CrossRef]

2008 (3)

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 (2008).
[CrossRef]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 (2008).
[CrossRef] [PubMed]

2007 (3)

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

2005 (1)

C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 (2005).
[CrossRef]

2004 (1)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

2003 (1)

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
[CrossRef] [PubMed]

2002 (2)

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

2001 (1)

K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 (2001).
[CrossRef]

2000 (2)

R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000).
[CrossRef]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

1999 (2)

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[CrossRef] [PubMed]

T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999).
[CrossRef]

1998 (2)

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

1997 (1)

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
[CrossRef]

1994 (1)

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994).
[CrossRef]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

1990 (1)

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Ashikawa, A.

C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Audebert, P.

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Barnes, W. L.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

Baumberg, J. J.

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 (2009).
[CrossRef]

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 (2005).
[CrossRef]

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
[CrossRef] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

Bernius, M.

R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000).
[CrossRef]

Billing, D. G.

D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 (2008).
[CrossRef]

Bloch, J.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

Boilot, J. P.

T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999).
[CrossRef]

Bradley, D. D.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Bradley, D. D. C.

R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000).
[CrossRef]

Bréhier, A.

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

Bulovic, V.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Burrows, P. E.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Butté, R.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Carlin, J. F.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Chaput, F.

T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999).
[CrossRef]

Christmann, G.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Chu, C. C.

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
[CrossRef]

Cohen, E.

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
[CrossRef] [PubMed]

Cronenberger, S.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

Dantas de Morais, T.

T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999).
[CrossRef]

Davanço, M.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 (2008).
[CrossRef] [PubMed]

Deleporte, E.

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

Dimitrakopoulos, C. D.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[CrossRef] [PubMed]

Era, M.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994).
[CrossRef]

Feltin, E.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Finlayson, C. E.

C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 (2005).
[CrossRef]

Fletcher, R. B.

R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000).
[CrossRef]

Forchel, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Forrest, S. R.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 (2008).
[CrossRef] [PubMed]

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Fox, A. M.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Galmiche, L.

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Gehring, G. A.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

Goto, T.

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

Grandjean, N.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Grundy, A. J. D.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Gu, G.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Gu, M.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009).
[CrossRef]

Gunshor, R. L.

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
[CrossRef]

Han, J.

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
[CrossRef]

Hobson, P. A.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Ishihara, T.

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

Jaque, D.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009).
[CrossRef]

Jiang, L.

M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007).
[CrossRef]

Kagan, C. R.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[CrossRef] [PubMed]

Kavokin, A. V.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kelkar, P. V.

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
[CrossRef]

Kéna-Cohen, S.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 (2008).
[CrossRef] [PubMed]

Khalfin, V. B.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Kozlov, V. G.

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Lagoudakis, P. G.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
[CrossRef] [PubMed]

Lahlil, K.

T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999).
[CrossRef]

Lanty, G.

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

Lauret, J. S.

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

Lauret, J.-S.

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Lemaître, A.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

Lemmerer, A.

D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 (2008).
[CrossRef]

Li, M.

M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007).
[CrossRef]

Lidzey, D. G.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002).
[CrossRef]

R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000).
[CrossRef]

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Light, M. E.

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Martin, M. D.

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
[CrossRef] [PubMed]

Miard, A.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

Mitzi, D. B.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[CrossRef] [PubMed]

Morimoto, S.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994).
[CrossRef]

Nagahama, H.

K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 (2001).
[CrossRef]

Nawrocki, M.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Nurmikko, A. V.

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
[CrossRef]

Parashkov, R.

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

Pfeiffer, L. N.

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
[CrossRef] [PubMed]

Pradeesh, K.

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 (2009).
[CrossRef]

Prakash, G. V.

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 (2009).
[CrossRef]

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
[CrossRef]

C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 (2005).
[CrossRef]

Qarry, A.

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
[CrossRef] [PubMed]

Rahn, M. D.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002).
[CrossRef]

Ratnani, R.

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Roberts, J. S.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

Ródenas, A.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009).
[CrossRef]

Saito, S.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994).
[CrossRef]

Saraswat, K.

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
[CrossRef]

Savvidis, P. G.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

Scalbert, D.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Skolnick, M. S.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Song, Y.

M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007).
[CrossRef]

Stevenson, R. M.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

Sumioka, K.

K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 (2001).
[CrossRef]

Takahashi, J.

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

Tsutsui, T.

K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 (2001).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994).
[CrossRef]

Virgili, T.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Vladimirova, M.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

von Högersthal, G. B.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Walker, S.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000).
[CrossRef]

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Wang, J.

M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007).
[CrossRef]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Whittaker, D. M.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Xia, A.

M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007).
[CrossRef]

Zhang, S.

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Zhou, G.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009).
[CrossRef]

Acta Mater. (1)

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009).
[CrossRef]

Adv. Mater. (2)

T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999).
[CrossRef]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000).
[CrossRef]

C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 (2005).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 (2009).
[CrossRef]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002).
[CrossRef]

K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007).
[CrossRef]

J. Phys: D App. Phys. (1)

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009).
[CrossRef]

N. J. Chem. (1)

D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 (2008).
[CrossRef]

N. J. Phys. (1)

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008).
[CrossRef]

Nat. Photonics (1)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Nature (2)

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Phys. Rev. B (5)

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009).
[CrossRef]

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002).
[CrossRef]

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997).
[CrossRef]

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 (1990).
[CrossRef]

Phys. Rev. Lett. (5)

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000).
[CrossRef] [PubMed]

C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 (2008).
[CrossRef] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003).
[CrossRef] [PubMed]

Science (1)

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[CrossRef] [PubMed]

Other (1)

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Exciton Switching and Peierls Transitions in Hybrid Inorganic-Organic Self-Assembled Quantum Wells,” Communicated (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Schematic diagram of CHPI layered structure with the corresponding energy level diagram showing the band gap of organic and inorganic layers. (B) X-ray diffraction pattern of CHPI thin film. (C) UV-Visible absorption and PL features of CHPI thin film.

Fig. 2
Fig. 2

(A) Confocal transmission image (B) PL image with 510nm high pass filter and (C) Laser (447nm) scattered image of CHPI single crystal. (D) and (E) Transmission and PL intensity spatial scans of the crystal at selective wavelengths 510nm and 523nm respectively. (F) PL spectra of CHPI thin films with different thicknesses and PL of single crystal at different positions (in mm) (0.34, 0.38), (0.46, 0.30), (0.34, 0.30), (0.40, 0), (0.34, 0.06) and (0.20, 0.30) respectively for labels 1 to 6.

Fig. 3
Fig. 3

(A) Metal-air microcavity. (B) Experimental angle-dependent transmission spectral image, solid circles are transmission dip minima. Transfer-matrix (red line) and two-level model (black dashed) also shown. (C-E) Transfer-matrix simulations of (C) angle-dependent transmission spectral image, (D) spatial map of optical intensity vs photon energy at 33° and (E) spatial map of optical intensity vs angle at energy 2.45eV

Fig. 4
Fig. 4

(A) Schematic diagram of the M-M microcavity. (B) Experimental angle-dependent transmission spectral image. Solid circles are from experimental transmission dips. Solid (red) and dashed (black) lines are from transfer-matrix and two-level mode simulations respectively (see text). Transfer-matrix simulated (C) angle-dependent transmission spectral image, (D) spatial map of optical intensity vs energy at 51° and (E) spatial map of optical intensity vs angle at energy 2.45eV.

Fig. 5
Fig. 5

(A) and (C) are experimental angle-dependent transmission spectral images of M-A cavity with C12PI excitons of aged (Phase I) and fresh (Phase II) cavities respectively (see text). Solid circles are from experimental transmission dips. Solid (red) and dashed (blue) lines are from transfer-matrix and two-level mode simulations respectively. (B) & (D) Transmission spectra of the M-A cavity of the Phase (I) and Phase (II) excitons respectively at the anti-crossing angles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E U , L ( θ ) = [ E p h ( θ ) + E C H P I ] 2 ± Ω 2 4 + [ E p h ( θ ) E C H P I ] 2 4

Metrics