Abstract

We show experimentally that the effects of pulse delay and advancement usually ascribed to the “slow and fast light” under conditions of the coherent population oscillations (CPO) can be universally observed with incoherent light fields on objects with the pure-intensity nonlinearity. As a light source, we used an incandescent lamp and as objects for study, a photochromic glass and a thermochromic coating. The response of the objects to intensity modulation of the incident light reproduced in all details the commonly accepted experimental evidences of the “light with a negative group velocity” and “ultraslow light”. Thus we show that observations of the pulse delay (advancement) and characteristic changes in the light intensity modulation spectrum are not enough to make conclusion about modification of the light group velocity in the medium.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Zapasskii and G. G. Kozlov, “A saturable absorber, coherent population oscillations, and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
    [CrossRef]
  2. V. S. Zapasskii and G. G. Kozlov, “Slow light and slow current,” Opt. Spectrosc. 106, 95–98 (2008).
    [CrossRef]
  3. A. C. Selden, “Pulse Transmission through a Saturable Absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967).
    [CrossRef]
  4. H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q- switched ruby laser,” Appl. Phys. Lett. 7(10), 270 (1965).
    [CrossRef]
  5. M. Hercher, W. Chu, and D. L. Stockman, “An experimental study of saturable absorbers for ruby laser,” J. Quantum Electron. 4(11), 954–968 (1968).
    [CrossRef]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  8. S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
    [CrossRef]
  9. P. W. Milonni, Fast Light, Slow light and Left-Handed Light, (Bristol, England: Institute of Physics, 2005).
  10. J. B. Khurgin, and R. S. Tucker, eds., Slow Light: Science and Applications, (CRC Press, 2009).
  11. E. B. Aleksandrov and V. S. Zapasskii, “Chasing slow light,” Phys. Usp. 49(10), 1067–1075 (2006).
    [CrossRef]
  12. B. Macke and B. Segand, “Slow light in saturable absorbers,” Phys. Rev. A 78(1), 013817–013824 (2008).
    [CrossRef]
  13. A. C. Selden. “Slow light and saturable absorption,” Opt. Spectrosc 106, 881–888 (2009).
    [CrossRef]
  14. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [CrossRef] [PubMed]
  15. S. Stepanov and E. H. Hernández “Controllable propagation of light pulses in Er-doped fibers with saturable absorption,” Opt. Lett . 33, 2242–2244 (2008)
    [CrossRef] [PubMed]

2008 (2)

V. S. Zapasskii and G. G. Kozlov, “Slow light and slow current,” Opt. Spectrosc. 106, 95–98 (2008).
[CrossRef]

B. Macke and B. Segand, “Slow light in saturable absorbers,” Phys. Rev. A 78(1), 013817–013824 (2008).
[CrossRef]

2006 (2)

V. S. Zapasskii and G. G. Kozlov, “A saturable absorber, coherent population oscillations, and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
[CrossRef]

E. B. Aleksandrov and V. S. Zapasskii, “Chasing slow light,” Phys. Usp. 49(10), 1067–1075 (2006).
[CrossRef]

2004 (1)

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

1968 (1)

M. Hercher, W. Chu, and D. L. Stockman, “An experimental study of saturable absorbers for ruby laser,” J. Quantum Electron. 4(11), 954–968 (1968).
[CrossRef]

1967 (2)

A. C. Selden, “Pulse Transmission through a Saturable Absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967).
[CrossRef]

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
[CrossRef]

1965 (1)

H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q- switched ruby laser,” Appl. Phys. Lett. 7(10), 270 (1965).
[CrossRef]

Aleksandrov, E. B.

E. B. Aleksandrov and V. S. Zapasskii, “Chasing slow light,” Phys. Usp. 49(10), 1067–1075 (2006).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Chang, S. W.

Chang-Hasnain, C. J.

Chu, W.

M. Hercher, W. Chu, and D. L. Stockman, “An experimental study of saturable absorbers for ruby laser,” J. Quantum Electron. 4(11), 954–968 (1968).
[CrossRef]

Chuang, S. L.

Collins, R. J.

H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q- switched ruby laser,” Appl. Phys. Lett. 7(10), 270 (1965).
[CrossRef]

Hercher, M.

M. Hercher, W. Chu, and D. L. Stockman, “An experimental study of saturable absorbers for ruby laser,” J. Quantum Electron. 4(11), 954–968 (1968).
[CrossRef]

Kozlov, G. G.

V. S. Zapasskii and G. G. Kozlov, “Slow light and slow current,” Opt. Spectrosc. 106, 95–98 (2008).
[CrossRef]

V. S. Zapasskii and G. G. Kozlov, “A saturable absorber, coherent population oscillations, and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
[CrossRef]

Ku, P. C.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Li, T.

Macke, B.

B. Macke and B. Segand, “Slow light in saturable absorbers,” Phys. Rev. A 78(1), 013817–013824 (2008).
[CrossRef]

Mocker, H. W.

H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q- switched ruby laser,” Appl. Phys. Lett. 7(10), 270 (1965).
[CrossRef]

Palinginis, P.

Schwarz, S. E.

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
[CrossRef]

Sedgwick, F.

Segand, B.

B. Macke and B. Segand, “Slow light in saturable absorbers,” Phys. Rev. A 78(1), 013817–013824 (2008).
[CrossRef]

Selden, A. C.

A. C. Selden, “Pulse Transmission through a Saturable Absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967).
[CrossRef]

Stockman, D. L.

M. Hercher, W. Chu, and D. L. Stockman, “An experimental study of saturable absorbers for ruby laser,” J. Quantum Electron. 4(11), 954–968 (1968).
[CrossRef]

Tan, T. Y.

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
[CrossRef]

Wang, H.

Zapasskii, V. S.

V. S. Zapasskii and G. G. Kozlov, “Slow light and slow current,” Opt. Spectrosc. 106, 95–98 (2008).
[CrossRef]

V. S. Zapasskii and G. G. Kozlov, “A saturable absorber, coherent population oscillations, and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
[CrossRef]

E. B. Aleksandrov and V. S. Zapasskii, “Chasing slow light,” Phys. Usp. 49(10), 1067–1075 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

H. W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q- switched ruby laser,” Appl. Phys. Lett. 7(10), 270 (1965).
[CrossRef]

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
[CrossRef]

Br. J. Appl. Phys. (1)

A. C. Selden, “Pulse Transmission through a Saturable Absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967).
[CrossRef]

J. Quantum Electron. (1)

M. Hercher, W. Chu, and D. L. Stockman, “An experimental study of saturable absorbers for ruby laser,” J. Quantum Electron. 4(11), 954–968 (1968).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (2)

V. S. Zapasskii and G. G. Kozlov, “A saturable absorber, coherent population oscillations, and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
[CrossRef]

V. S. Zapasskii and G. G. Kozlov, “Slow light and slow current,” Opt. Spectrosc. 106, 95–98 (2008).
[CrossRef]

Phys. Rev. A (1)

B. Macke and B. Segand, “Slow light in saturable absorbers,” Phys. Rev. A 78(1), 013817–013824 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Phys. Usp. (1)

E. B. Aleksandrov and V. S. Zapasskii, “Chasing slow light,” Phys. Usp. 49(10), 1067–1075 (2006).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Other (4)

P. W. Milonni, Fast Light, Slow light and Left-Handed Light, (Bristol, England: Institute of Physics, 2005).

J. B. Khurgin, and R. S. Tucker, eds., Slow Light: Science and Applications, (CRC Press, 2009).

A. C. Selden. “Slow light and saturable absorption,” Opt. Spectrosc 106, 881–888 (2009).
[CrossRef]

S. Stepanov and E. H. Hernández “Controllable propagation of light pulses in Er-doped fibers with saturable absorption,” Opt. Lett . 33, 2242–2244 (2008)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Regularities of optical response of the medium with the intensity-type nonlinearity. a – response to a stepwise change of the incident light intensity; b and c – frequency dependences of the amplitude and phase of a sine-modulated beam at the exit of the medium; d – temporal shift of a smooth pulse of intensity modulation. Curves 1 and 2 correspond to the cases of superlinear and sublinear dependence (1).

Fig. 2
Fig. 2

Experimental setup for measuring dynamics of darkening in the photochromic glass. 1 – incandescent lamp, 2 – focusing lenses, 3 – photochromic glass, 4 – photodetectors, 5 – laser diod, 6 – vibrating prism, 7 – data processing system, 8 – power supply, 9 – controlling low-frequency generator.

Fig. 3
Fig. 3

Experimental time dependence of the photochromic glass darkening (a) induced by the square-wave modulated pump light (b).

Fig. 4
Fig. 4

Frequency dependences of the amplitude (a) and phase (b) of the sine-modulated light transmitted through the photochromic glass.

Fig. 5
Fig. 5

A sketch of time advancement of the sine- modulated light transmitted through the photochromic glass.

Fig. 6
Fig. 6

Experimental dependence I out(I in) for the thermochromic coating.

Fig. 7
Fig. 7

Time dependence of intensity of the light reflected from the thermochromic coating for the square-wave modulated incident light of the incandescent lamp.

Fig. 8
Fig. 8

Frequency dependences of the amplitude (a) and phase (b) of the sine-modulated light reflected from the thermochromic coating.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I o u t = K ( I i n , t ) I i n
d K d t = K e q K τ
K e q ( I i n ) = K 0 + K 1 I i n , K 1 I i n < < K 0 ,
V g r = c n + ω 0 d n / d ω

Metrics