Abstract

This paper presents a high bend tolerant multimode optical fiber transmission system that is compatible with standard 50 µm graded index multimode fiber, in terms of achievable bandwidth and interconnectivity losses. When the 10 loops of the proposed bend resistive multimode fiber were wrapped around a cylinder of 1.5 mm radius, bend losses below -0.2 dB were achieved in case of experimentally produced fiber. Furthermore, when the section of the proposed bend resistive fiber was inserted between two sections of a standard 50 µm graded index multimode fiber, the total experimental measured loss proved to be below -0.15 dB.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220 (1976).
    [CrossRef]
  2. D. Marcuse, "Field deformation and loss caused by curvature of optical fibres," J. Opt. Soc. Am. 66, 311-320 (1976).
    [CrossRef]
  3. W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, "Measurement of radiation loss in curved singlemode fibres," Microwaves, Opt. Acoust. 2, 134-140 (1978).
    [CrossRef]
  4. E. G. Neumann and W. Richter, "Sharp bends with low losses in dielectric optical waveguides," Appl. Opt. 22, 1016-1022 (1983).
    [CrossRef] [PubMed]
  5. A. J. Harris and P. F. Castle, "Bend Loss Measurements on High Numerical Aperture Single-Mode Fibres as a Function of Wavelength and Bend Radius," J. Lightwave Technol. 4, 34-40 (1986).
    [CrossRef]
  6. R. C. Gauthier and C. Ross, "Theoretical and experimental consideration for single-mode fibre optic bend-type sensors," Appl. Opt. 36, 6264-6273 (1997).
    [CrossRef]
  7. L. Faustini and G. Martini, "Bend loss in single-mode fibers," J. Lightwave Technol. 15, 671-679 (1997).
    [CrossRef]
  8. D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunication fibers," Appl. Phys. Lett. 77,3911-3913 (2000).
    [CrossRef]
  9. N. Healy and C. D. Hussey, "Minimizing bend loss by removing material inside the caustic in bent single-mode fibers," Appl. Opt. 45, 4219-4222 (2006).
    [CrossRef] [PubMed]
  10. G. B. Ren, P. Shum P, L. R. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, "Design of all-solid bandgap fiber with improved confinement and bend losses," Photon. Technol. Lett. 18, 2560-2562 (2006).
    [CrossRef]
  11. C. Martelli, J. Canning, B. Gibson, and S. Huntington, "Bend loss in structured optical fibres," Opt. Express 15,17639-17644 (2007).
    [CrossRef] [PubMed]
  12. P. R. Watekar, S. Ju, Y. S. Yoon, Y. S. Lee, and W. T. Han, "Design of a trenched bend insensitive single mode optical fiber using spot size definitions, Opt. Express 16, 13545-13551 (2008).
    [CrossRef] [PubMed]
  13. D. Gloge, "Bending Loss in Multimode Fibers with Graded and Ungraded Core Index," Appl. Opt. 11,2506-2513 (1972).
    [CrossRef] [PubMed]
  14. M. Y. Loke and J. N. McMullin, "Simulation and measurement of radiation loss at multimode fiber macrobends," J. Lightwave Technol. 8, 1250 - 1256 (1990).
    [CrossRef]
  15. M. Skorobogatiy, K. Saitoh, and M. Koshiba, "Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers," Opt. Express 16, 14945-14953 (2008).
    [CrossRef] [PubMed]
  16. G. Ning, T. Katsuhiro, I. Katsuaki, A. Kazuhiko, and H. Kuniharu, "Hole-assisted holey fiber and low bending loss multimode holey fiber," US Patent. 7,292,762 (2007).
  17. K. Yasushi, T. Katsuhiro, and H. Kuniharu, "Low bending loss multimode fiber," JP Patent Appl. Publ. JP2006047719 (2006).
  18. http://www.corning.com/opticalfiber/products/clearcurve_multimode_fiber.aspx
  19. D. Marcuse, "Derivation of Coupled Power Equations," Bell Syst. Tech. J. 51, 229-237, (1972).
  20. D. Marcuse, "Coupled Mode Theory of Round Optical Fiber," Bell Syst. Tech. J. 52, 817-842 (1973).
  21. R. Olshansky, "Mode coupling effects in graded-index optical fibers," Appl. Opt. 14, 935-945 (1975).
    [PubMed]
  22. N. Lagakos, J. H. Cole, and J. A. Bucaro, "Microbend fiber-optic sensor," Appl. Opt. 26, 2171-2180 (1987).
    [CrossRef] [PubMed]
  23. D. Donlagic and B. Culshaw, "Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber," J. Lightwave Technol. 17,1856 - 1868 (1999).
    [CrossRef]
  24. D. Donlagic and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems", J. Lightwave Technol. 18, 334-342 (2000).
    [CrossRef]
  25. P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen, and P. Pleunis "Development of system specification for laser-optimized 50-um multimode fiber for multigigabit short-wavelength LANs," J. Lightwave Technol. 21, 1256-1275 (2003).
    [CrossRef]
  26. P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, and A. Risteski, "Modeling and simulation of next-generation multimode fiber links," J. Lightwave Technol. 21, 1242-1255 (2003).
    [CrossRef]
  27. D. Donlagic, "Opportunities to enhance multimode fiber links by application of overfilled launch," J. Lightwave Technol. 23, 2526-2540 (2005).
  28. "Encircled Flux Testing," Advanced Optical Components (Finisra), Internal Technical Report, 8/29/2000.

2008 (2)

2007 (1)

2006 (2)

N. Healy and C. D. Hussey, "Minimizing bend loss by removing material inside the caustic in bent single-mode fibers," Appl. Opt. 45, 4219-4222 (2006).
[CrossRef] [PubMed]

G. B. Ren, P. Shum P, L. R. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, "Design of all-solid bandgap fiber with improved confinement and bend losses," Photon. Technol. Lett. 18, 2560-2562 (2006).
[CrossRef]

2005 (1)

D. Donlagic, "Opportunities to enhance multimode fiber links by application of overfilled launch," J. Lightwave Technol. 23, 2526-2540 (2005).

2003 (2)

2000 (2)

D. Donlagic and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems", J. Lightwave Technol. 18, 334-342 (2000).
[CrossRef]

D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunication fibers," Appl. Phys. Lett. 77,3911-3913 (2000).
[CrossRef]

1999 (1)

1997 (2)

1990 (1)

M. Y. Loke and J. N. McMullin, "Simulation and measurement of radiation loss at multimode fiber macrobends," J. Lightwave Technol. 8, 1250 - 1256 (1990).
[CrossRef]

1987 (1)

1986 (1)

A. J. Harris and P. F. Castle, "Bend Loss Measurements on High Numerical Aperture Single-Mode Fibres as a Function of Wavelength and Bend Radius," J. Lightwave Technol. 4, 34-40 (1986).
[CrossRef]

1983 (1)

1978 (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, "Measurement of radiation loss in curved singlemode fibres," Microwaves, Opt. Acoust. 2, 134-140 (1978).
[CrossRef]

1976 (2)

1975 (1)

1973 (1)

D. Marcuse, "Coupled Mode Theory of Round Optical Fiber," Bell Syst. Tech. J. 52, 817-842 (1973).

1972 (2)

D. Marcuse, "Derivation of Coupled Power Equations," Bell Syst. Tech. J. 51, 229-237, (1972).

D. Gloge, "Bending Loss in Multimode Fibers with Graded and Ungraded Core Index," Appl. Opt. 11,2506-2513 (1972).
[CrossRef] [PubMed]

Abbott, J. S.

Bucaro, J. A.

Canning, J.

Castle, P. F.

A. J. Harris and P. F. Castle, "Bend Loss Measurements on High Numerical Aperture Single-Mode Fibres as a Function of Wavelength and Bend Radius," J. Lightwave Technol. 4, 34-40 (1986).
[CrossRef]

Chen, Y. C.

Cole, J. H.

Culshaw, B.

Donlagic, D.

Faustini, L.

L. Faustini and G. Martini, "Bend loss in single-mode fibers," J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Gambling, W. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, "Measurement of radiation loss in curved singlemode fibres," Microwaves, Opt. Acoust. 2, 134-140 (1978).
[CrossRef]

Gauthier, R. C.

Gibson, B.

Gloge, D.

Golowich, S. E.

Hackert, M. J.

Han, W. T.

Harris, A. J.

A. J. Harris and P. F. Castle, "Bend Loss Measurements on High Numerical Aperture Single-Mode Fibres as a Function of Wavelength and Bend Radius," J. Lightwave Technol. 4, 34-40 (1986).
[CrossRef]

Healy, N.

Huntington, S.

Hussey, C. D.

Ju, S.

Kolesar, P.

Koshiba, M.

Lagakos, N.

Lee, Y. S.

Loke, M. Y.

M. Y. Loke and J. N. McMullin, "Simulation and measurement of radiation loss at multimode fiber macrobends," J. Lightwave Technol. 8, 1250 - 1256 (1990).
[CrossRef]

Marcuse, D.

D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220 (1976).
[CrossRef]

D. Marcuse, "Field deformation and loss caused by curvature of optical fibres," J. Opt. Soc. Am. 66, 311-320 (1976).
[CrossRef]

D. Marcuse, "Coupled Mode Theory of Round Optical Fiber," Bell Syst. Tech. J. 52, 817-842 (1973).

D. Marcuse, "Derivation of Coupled Power Equations," Bell Syst. Tech. J. 51, 229-237, (1972).

Martelli, C.

Martini, G.

L. Faustini and G. Martini, "Bend loss in single-mode fibers," J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Matsumura, H.

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, "Measurement of radiation loss in curved singlemode fibres," Microwaves, Opt. Acoust. 2, 134-140 (1978).
[CrossRef]

McMullin, J. N.

M. Y. Loke and J. N. McMullin, "Simulation and measurement of radiation loss at multimode fiber macrobends," J. Lightwave Technol. 8, 1250 - 1256 (1990).
[CrossRef]

Neumann, E. G.

Olshansky, R.

Pepeljugoski, P.

Pleunis, P.

Ragdale, C. M.

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, "Measurement of radiation loss in curved singlemode fibres," Microwaves, Opt. Acoust. 2, 134-140 (1978).
[CrossRef]

Ren, G. B.

G. B. Ren, P. Shum P, L. R. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, "Design of all-solid bandgap fiber with improved confinement and bend losses," Photon. Technol. Lett. 18, 2560-2562 (2006).
[CrossRef]

Richter, W.

Risteski, A.

Ritger, A. J.

Ross, C.

Saitoh, K.

Sammut, R. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, "Measurement of radiation loss in curved singlemode fibres," Microwaves, Opt. Acoust. 2, 134-140 (1978).
[CrossRef]

Skorobogatiy, M.

Swanson, S. E.

Watekar, P. R.

Yoon, Y. S.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunication fibers," Appl. Phys. Lett. 77,3911-3913 (2000).
[CrossRef]

Bell Syst. Tech. J. (2)

D. Marcuse, "Derivation of Coupled Power Equations," Bell Syst. Tech. J. 51, 229-237, (1972).

D. Marcuse, "Coupled Mode Theory of Round Optical Fiber," Bell Syst. Tech. J. 52, 817-842 (1973).

J. Lightwave Technol. (8)

M. Y. Loke and J. N. McMullin, "Simulation and measurement of radiation loss at multimode fiber macrobends," J. Lightwave Technol. 8, 1250 - 1256 (1990).
[CrossRef]

L. Faustini and G. Martini, "Bend loss in single-mode fibers," J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

A. J. Harris and P. F. Castle, "Bend Loss Measurements on High Numerical Aperture Single-Mode Fibres as a Function of Wavelength and Bend Radius," J. Lightwave Technol. 4, 34-40 (1986).
[CrossRef]

D. Donlagic and B. Culshaw, "Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber," J. Lightwave Technol. 17,1856 - 1868 (1999).
[CrossRef]

D. Donlagic and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems", J. Lightwave Technol. 18, 334-342 (2000).
[CrossRef]

P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen, and P. Pleunis "Development of system specification for laser-optimized 50-um multimode fiber for multigigabit short-wavelength LANs," J. Lightwave Technol. 21, 1256-1275 (2003).
[CrossRef]

P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, and A. Risteski, "Modeling and simulation of next-generation multimode fiber links," J. Lightwave Technol. 21, 1242-1255 (2003).
[CrossRef]

D. Donlagic, "Opportunities to enhance multimode fiber links by application of overfilled launch," J. Lightwave Technol. 23, 2526-2540 (2005).

J. Opt. Soc. Am. (2)

Opt. Acoust. (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, "Measurement of radiation loss in curved singlemode fibres," Microwaves, Opt. Acoust. 2, 134-140 (1978).
[CrossRef]

Opt. Express (3)

Photon. Technol. Lett. (1)

G. B. Ren, P. Shum P, L. R. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, "Design of all-solid bandgap fiber with improved confinement and bend losses," Photon. Technol. Lett. 18, 2560-2562 (2006).
[CrossRef]

Other (4)

G. Ning, T. Katsuhiro, I. Katsuaki, A. Kazuhiko, and H. Kuniharu, "Hole-assisted holey fiber and low bending loss multimode holey fiber," US Patent. 7,292,762 (2007).

K. Yasushi, T. Katsuhiro, and H. Kuniharu, "Low bending loss multimode fiber," JP Patent Appl. Publ. JP2006047719 (2006).

http://www.corning.com/opticalfiber/products/clearcurve_multimode_fiber.aspx

"Encircled Flux Testing," Advanced Optical Components (Finisra), Internal Technical Report, 8/29/2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Bend loss of the mode in curved fiber.

Fig. 2.
Fig. 2.

The phase constant space of a) hypothetical bend resistive multimode fiber phase; b) parabolic multimode fiber (each arrow represents a fiber mode; the position of the arrow on the x-axis indicates the mode phase constant; nmax is maximum core index).

Fig. 3.
Fig. 3.

Modal structure and excitation in a bend resistive transmission system (each short arrow represents a fiber mode; the position of the arrow on the x-axis indicates the mode phase constant; tall arrows indicate excited modes used for signal transmission)

Fig. 4.
Fig. 4.

Bend resistive multimode system

Fig. 5.
Fig. 5.

a. Lead-in fiber; b example of transmission fiber matched to lead-in fiber: Local matching of relative graded index profile shapes of transmission fibers to lead-in and can assure selective launch of individual modes with high neff/nclad ratio in transmission fiber.

Fig. 6.
Fig. 6.

Basic approach to bend resistive fiber design that is compatible with 50 µm GI MMF

Fig. 7.
Fig. 7.

Practical producible (truncated) bend resistive fiber profile

Fig. 8.
Fig. 8.

Comparison of optical intensities in standard 50 µm GI MMF and bend resistive fiber for a few arbitrary selected modes (LP(0,1), LP(5,3) and LP(9,5)). The modes with the same designation in standard and bend- resistive fibers have identical transversal power distributions, but considerably different effective indexes (calculation was performed at 1300 nm).

Fig. 9.
Fig. 9.

Effective refractive index space of standard 50 um GI MMF and bend resistive fiber (at 850 nm). Each dot in the graph represents one LP mode.

Fig. 10.
Fig. 10.

Group delay of bend resistive fiber modes at 850 nm (α parameter is optimized for 850 nm and corresponds to α=2.087). Each dot in the graph presents one LP mode. Around the first 100 LP modes exhibit very low differential group delay (theoretically less than 50 ps/km).

Fig. 11.
Fig. 11.

Preform analyzer data for the practically produced bend resistive fiber

Fig. 12.
Fig. 12.

Experimental setups used for macrobend evaluation.

Fig. 13.
Fig. 13.

Transmission of the fiber versus bend diameter for a single fiber loop

Fig. 14.
Fig. 14.

Transmission of the fiber versus bend diameter for ten fiber loops

Fig. 15.
Fig. 15.

a. Microbend test set-up and b. comparison of microbend performance for standard 50 µm fiber multimode and the proposed bend resistive system.

Tables (1)

Tables Icon

Table 1. Summary of bend resistive GI-MMF design parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β c ( r ) R r β
k 0 n c = β c ( r c ) R r c β
r c β k 0 R n c = n eff n c R

Metrics