Abstract

Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used scanning two-photon laser excitation and the time-correlated single photon counting (TCSPC) method to sample a ~4 mm2 region. Three types of counterfeit samples were tested. Four out of the nine counterfeit samples fit to a one-component decay. Five out of nine counterfeit samples fit to a two-component model, but are identified as counterfeit due to significant deviations in the longer lifetime component compared to genuine bills.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Becker, The bh TCSPC Handbook (Becker & Hickl, 2008).
  2. K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
    [CrossRef] [PubMed]
  3. T. H. Chia, A. Williamson, D. D. Spencer, and M. J. Levene, “Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding,” Opt. Express 16(6), 4237–4249 (2008).
    [CrossRef] [PubMed]
  4. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
    [CrossRef]
  5. T. Q. Ni and L. A. Melton, “Two-dimensional gas-phase temperature measurements using fluorescence lifetime imaging,” Appl. Spectrosc. 50(9), 1112–1116 (1996).
    [CrossRef]
  6. D. Comelli, G. Valentini, R. Cubeddu, and L. Toniolo, “Fluorescence lifetime imaging and Fourier transform infrared spectroscopy of Michelangelo’s David,” Appl. Spectrosc. 59(9), 1174–1181 (2005).
    [CrossRef] [PubMed]
  7. M. Suzuki, “Development of a simple and non-destructive examination for counterfeit coins using acoustic characteristics,” Forensic Sci. Int. 177(1), e5–e8 (2008).
    [CrossRef] [PubMed]
  8. V. Rusanov, K. Chakarova, and T. Madolev, “Mössbauer spectroscopy investigation of the properties and stability of dollar bank note pigments,” Appl. Spectrosc. 56(9), 1228–1236 (2002).
    [CrossRef]
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  10. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  11. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
    [CrossRef] [PubMed]
  12. R. Judson, and R. Porter, “Estimating the worldwide volume of counterfeit U.S. currency: data and extrapolation,” FEDs Working Paper No. 2003–52 (2003).
  13. D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43(10), 2175–2183 (2004).
    [CrossRef] [PubMed]
  14. J. Cameron, J. Marengo, R. Judson, and J. Pruiksma, “The use and counterfeiting of United States currency abroad, part 3,” presented to United States Congress by the Secretary of the Treasury, Sept. 2006.
  15. Q. S. Hanley, D. J. Arndt-Jovin, and T. M. Jovin, “Spectrally resolved fluorescence lifetime imaging microscopy,” Appl. Spectrosc. 56(2), 155–166 (2002).
    [CrossRef]
  16. D. K. Bird, K. W. Eliceiri, C. H. Fan, and J. G. White, “Simultaneous two-photon spectral and lifetime fluorescence microscopy,” Appl. Opt. 43(27), 5173–5182 (2004).
    [CrossRef] [PubMed]

2008 (2)

2005 (2)

2004 (3)

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (3)

1996 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Arndt-Jovin, D. J.

Becker, W.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[CrossRef] [PubMed]

Benndorf, K.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[CrossRef] [PubMed]

Bergmann, A.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[CrossRef] [PubMed]

Bird, D. K.

Biskup, C.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[CrossRef] [PubMed]

Chakarova, K.

Chia, T. H.

Colombo, C.

Comelli, D.

Cubeddu, R.

D’Andrea, C.

D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43(10), 2175–2183 (2004).
[CrossRef] [PubMed]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Eliceiri, K. W.

Fan, C. H.

French, P. M.

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

Hanley, Q. S.

Hink, M. A.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[CrossRef] [PubMed]

Jovin, T. M.

König, K.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[CrossRef] [PubMed]

Levene, M. J.

Madolev, T.

Melton, L. A.

Ni, T. Q.

Phillips, D.

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

Rusanov, V.

Spencer, D. D.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Suhling, K.

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

Suzuki, M.

M. Suzuki, “Development of a simple and non-destructive examination for counterfeit coins using acoustic characteristics,” Forensic Sci. Int. 177(1), e5–e8 (2008).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[CrossRef]

Toniolo, L.

Valentini, G.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

White, J. G.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Williamson, A.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (4)

Forensic Sci. Int. (1)

M. Suzuki, “Development of a simple and non-destructive examination for counterfeit coins using acoustic characteristics,” Forensic Sci. Int. 177(1), e5–e8 (2008).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[CrossRef]

Microsc. Res. Tech. (1)

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Photochem. Photobiol. Sci. (1)

K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (3)

W. Becker, The bh TCSPC Handbook (Becker & Hickl, 2008).

R. Judson, and R. Porter, “Estimating the worldwide volume of counterfeit U.S. currency: data and extrapolation,” FEDs Working Paper No. 2003–52 (2003).

J. Cameron, J. Marengo, R. Judson, and J. Pruiksma, “The use and counterfeiting of United States currency abroad, part 3,” presented to United States Congress by the Secretary of the Treasury, Sept. 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The red square between the Federal Reserve Bank seal and the serial number on the U.S. $100 bill indicates the ~4 mm2 region where fluorescence lifetime was collected.

Fig. 2
Fig. 2

The blue points represent a typical fluorescence lifetime decay curve taken from a one hundred-dollar bill. Blue points correspond to the photon counts for a given time interval after the excitation laser pulse. The red line is a two-component fit based on a minimization of the χ2 value. The green line is the instrument response function (IRF). The measured lifetimes (τ1, τ2) and amplitudes (a1, a2) of the two-component fit are on the right.

Fig. 3
Fig. 3

The intrinsic fluorescence spectra of a $1 and a $100 U.S. Federal Reserve Note. All genuine notes tested possessed similar broadband fluorescence from 400 - 650 nm.

Fig. 4
Fig. 4

Representative fluorescence lifetime decay curves from genuine paper money and three different types of counterfeit currency. Digital counterfeits immediately appear different from genuine $100 Federal Reserve Notes because of the linear (one-component) decay. Washed counterfeits and most traditional counterfeits fit to a two-component decay. However, the long lifetime component (τ2) is measured to be significantly shorter in these samples than the long lifetime component in genuine $100 bills. This difference is also apparent when examining the shape of the fluorescence lifetime decay curves.

Fig. 5
Fig. 5

Comparisons between longer lifetime values (τ2) of different denominations of genuine Federal Reserve Notes and counterfeit notes fit to a two-component model. Only counterfeit samples fit to two-components (three bleached and two traditional) were included in order to provide a better comparison to bills with a more advanced level of counterfeiting. The longer lifetime component is significantly different in genuine samples when compared to the counterfeits (p < 0.001). Values are given as mean ± SD.

Tables (1)

Tables Icon

Table 1 Intrinsic fluorescence lifetimes for four denominations of genuine U.S. Federal Reserve Notes, three types of counterfeits, and three types of basic materials. In samples fit to a two-component decay, the longer lifetime (τ2) is the salient value in determining genuine versus counterfeit Federal Reserve Notes. Values are given as mean ± SD.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( t ) = a 1 e t τ 1 + a 2 e t τ 2

Metrics