Abstract

A new phosphor Y4Al2O9:Eu3+ (YAM:Eu3+) emitting intense monochromatic red at 612 nm under vacuum ultraviolet (VUV) and ultraviolet (UV) excitations has been developed for application in next generation plasma display panels (PDPs). The developed phosphor has better luminescence efficiency, colour purity and shorter decay time than commercial (Y,Gd)BO3:Eu3+ red emitting PDP phosphor. High color purity (x = 0.67, y = 0.32) under VUV excitation with short decay time (1.03 msec) and excellent stability against degradation during PDP panel preparation suggest that YAM:Eu3+ is a potential candidate for present and future PDPs. Surface coating by SiO2 further improved phosphor characteristics.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
    [CrossRef]
  2. R. P. Rao and D. J. Devine, “RE-activated lanthanide phosphate phosphors for PDP applications,” J. Lumin. 87-89, 1260–1263 (2000).
    [CrossRef]
  3. H. M. Yang, J. X. Shi, H. B. Liang, and M. L. Gong, “Novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications,” J. Mater. Sci. Eng. B 127(2-3), 276–279 (2006).
    [CrossRef]
  4. S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
    [CrossRef]
  5. Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, “Ba5SiO4:Eu2+: An intense blue emission phosphor under vacumm ultraviolet and near-ultraviolet excitation,” Appl. Phys. Lett. 88(5), 051906 (2006).
    [CrossRef]
  6. G. Bizarri and B. Moine, “On BaMgAl10O17: Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
    [CrossRef]
  7. C. Okazaki, M. Shiiki, T. Suzuki, and K. Suzuki, “Luminescence saturation properties of PDP phosphors,” J. Lumin. 87-89, 1280–1282 (2000).
    [CrossRef]
  8. C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin. 49, 72 (1997).
  9. K. S. Sohn, S. S. Kim, and H. D. Park, “Lumnescence quenching in thermally-treated barium magnesium aluminate phosphor,” Appl. Phys. Lett. 81(10), 1759 (2002).
    [CrossRef]
  10. S. Shionoya, and W. M. Yen, eds., Phosphor Handbook, (CRC Press, NY, 1999), p. 629.
  11. B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, and G. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express 17(9), 7138–7144 (2009).
    [CrossRef] [PubMed]
  12. Y. C. Kang, Y. S. Chung, and S. B. Park, “Preparation of YAG:Europium Red Phosphors by Spray Pyrolysis Using a Filter-Expansion Aerosol Generator,” J. Am. Ceram. Soc. 82, 2056 (1999).
    [CrossRef]
  13. W. Y. Ching and Y. N. Xu, “Nonscalability and nontransferbility in the eletronic properties of the Y-Al-O systems,” Phys. Rev. B 59(20), 12815 (1999).
    [CrossRef]
  14. V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping,” Appl. Phys. Lett. 81(15), 2677 (2002).
    [CrossRef]
  15. C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminium garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80(19), 3608 (2002).
    [CrossRef]
  16. J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
    [CrossRef]
  17. G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
    [CrossRef]
  18. D. Y. Wang and Y. H. Wang, “Photoluminescence of Y4Al2O9:Re (Re= Tb3+, Eu3+) under VUV excitation,” J. Alloy. Comp. 425(1-2), L5–L7 (2006).
    [CrossRef]
  19. H. Yamane, M. Shimada, and B. A. Hunter, “High-Temperature Neutron Diffraction Study of Y4Al2O9,” J. Solid State Chem. 141(2), 466–474 (1998).
    [CrossRef]
  20. P. B. Wagh, A. V. Rao, and D. Haranath, “Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels,” Mater. Chem. Phys. 53(1), 41–47 (1998).
    [CrossRef]
  21. JCPDS card no. 22–0987.
  22. J. P. Boeuf, “Plasma display panels:physics, recent developments and key issues,” J. Phys. D Appl. Phys. 36(6), R53–R79 (2003).
    [CrossRef]
  23. K. Saito and A. J. Ikushima, “ Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
    [CrossRef]
  24. I. Y. Jung, Soc. Inform. Display Digest, 1325 (2007).
  25. I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
    [CrossRef]
  26. C. W. Cho, U. Paik, D. H. Park, Y. C. Kim, and D. S. Zang, “Design of fine phosphor system for thr improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoritical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
    [CrossRef]
  27. L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
    [CrossRef]
  28. O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
    [CrossRef]
  29. M. Yin, W. Zhang, L. Lou, S. Xia, and J. C. Krupa, “Spectroscopic properties of Eu3+ ions in X1–Y2SiO5 at nanometric scale,” Physica B 254(1-2), 141–147 (1998).
    [CrossRef]
  30. D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphor for 3D application of plasma display panels,” J. Lumin. 129(9), 1088–1093 (2009).
    [CrossRef]
  31. J. P. Rainho, L. D. Carlos, and J. Rocha, “New phosphors based on Eu3+-doped microporous titanosilicates,” J. Lumin. 87-89, 1083–1086 (2000).
    [CrossRef]

2009 (2)

B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, and G. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express 17(9), 7138–7144 (2009).
[CrossRef] [PubMed]

D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphor for 3D application of plasma display panels,” J. Lumin. 129(9), 1088–1093 (2009).
[CrossRef]

2008 (1)

C. W. Cho, U. Paik, D. H. Park, Y. C. Kim, and D. S. Zang, “Design of fine phosphor system for thr improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoritical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

2007 (1)

L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
[CrossRef]

2006 (4)

D. Y. Wang and Y. H. Wang, “Photoluminescence of Y4Al2O9:Re (Re= Tb3+, Eu3+) under VUV excitation,” J. Alloy. Comp. 425(1-2), L5–L7 (2006).
[CrossRef]

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

H. M. Yang, J. X. Shi, H. B. Liang, and M. L. Gong, “Novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications,” J. Mater. Sci. Eng. B 127(2-3), 276–279 (2006).
[CrossRef]

Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, “Ba5SiO4:Eu2+: An intense blue emission phosphor under vacumm ultraviolet and near-ultraviolet excitation,” Appl. Phys. Lett. 88(5), 051906 (2006).
[CrossRef]

2005 (3)

G. Bizarri and B. Moine, “On BaMgAl10O17: Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
[CrossRef]

G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
[CrossRef]

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

2003 (2)

J. P. Boeuf, “Plasma display panels:physics, recent developments and key issues,” J. Phys. D Appl. Phys. 36(6), R53–R79 (2003).
[CrossRef]

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

2002 (3)

K. S. Sohn, S. S. Kim, and H. D. Park, “Lumnescence quenching in thermally-treated barium magnesium aluminate phosphor,” Appl. Phys. Lett. 81(10), 1759 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping,” Appl. Phys. Lett. 81(15), 2677 (2002).
[CrossRef]

C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminium garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80(19), 3608 (2002).
[CrossRef]

2001 (1)

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

2000 (4)

R. P. Rao and D. J. Devine, “RE-activated lanthanide phosphate phosphors for PDP applications,” J. Lumin. 87-89, 1260–1263 (2000).
[CrossRef]

C. Okazaki, M. Shiiki, T. Suzuki, and K. Suzuki, “Luminescence saturation properties of PDP phosphors,” J. Lumin. 87-89, 1280–1282 (2000).
[CrossRef]

K. Saito and A. J. Ikushima, “ Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[CrossRef]

J. P. Rainho, L. D. Carlos, and J. Rocha, “New phosphors based on Eu3+-doped microporous titanosilicates,” J. Lumin. 87-89, 1083–1086 (2000).
[CrossRef]

1999 (2)

Y. C. Kang, Y. S. Chung, and S. B. Park, “Preparation of YAG:Europium Red Phosphors by Spray Pyrolysis Using a Filter-Expansion Aerosol Generator,” J. Am. Ceram. Soc. 82, 2056 (1999).
[CrossRef]

W. Y. Ching and Y. N. Xu, “Nonscalability and nontransferbility in the eletronic properties of the Y-Al-O systems,” Phys. Rev. B 59(20), 12815 (1999).
[CrossRef]

1998 (3)

H. Yamane, M. Shimada, and B. A. Hunter, “High-Temperature Neutron Diffraction Study of Y4Al2O9,” J. Solid State Chem. 141(2), 466–474 (1998).
[CrossRef]

P. B. Wagh, A. V. Rao, and D. Haranath, “Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels,” Mater. Chem. Phys. 53(1), 41–47 (1998).
[CrossRef]

M. Yin, W. Zhang, L. Lou, S. Xia, and J. C. Krupa, “Spectroscopic properties of Eu3+ ions in X1–Y2SiO5 at nanometric scale,” Physica B 254(1-2), 141–147 (1998).
[CrossRef]

1997 (2)

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin. 49, 72 (1997).

Alves, S.

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

Andrade, A. V. M.

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

Bizarri, G.

G. Bizarri and B. Moine, “On BaMgAl10O17: Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
[CrossRef]

Blomquist, S. M.

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

Boeuf, J. P.

J. P. Boeuf, “Plasma display panels:physics, recent developments and key issues,” J. Phys. D Appl. Phys. 36(6), R53–R79 (2003).
[CrossRef]

Carlos, L. D.

J. P. Rainho, L. D. Carlos, and J. Rocha, “New phosphors based on Eu3+-doped microporous titanosilicates,” J. Lumin. 87-89, 1083–1086 (2000).
[CrossRef]

Ching, W. Y.

W. Y. Ching and Y. N. Xu, “Nonscalability and nontransferbility in the eletronic properties of the Y-Al-O systems,” Phys. Rev. B 59(20), 12815 (1999).
[CrossRef]

Cho, C. W.

C. W. Cho, U. Paik, D. H. Park, Y. C. Kim, and D. S. Zang, “Design of fine phosphor system for thr improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoritical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Cho, Y.

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

Choe, J. Y.

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

Chung, Y. S.

Y. C. Kang, Y. S. Chung, and S. B. Park, “Preparation of YAG:Europium Red Phosphors by Spray Pyrolysis Using a Filter-Expansion Aerosol Generator,” J. Am. Ceram. Soc. 82, 2056 (1999).
[CrossRef]

Devine, D. J.

R. P. Rao and D. J. Devine, “RE-activated lanthanide phosphate phosphors for PDP applications,” J. Lumin. 87-89, 1260–1263 (2000).
[CrossRef]

Egoshi, K.

Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, “Ba5SiO4:Eu2+: An intense blue emission phosphor under vacumm ultraviolet and near-ultraviolet excitation,” Appl. Phys. Lett. 88(5), 051906 (2006).
[CrossRef]

Ervin, M. H.

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

Farias, F. S.

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

Fu, Y.

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Fujii, H.

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Gong, M. L.

H. M. Yang, J. X. Shi, H. B. Liang, and M. L. Gong, “Novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications,” J. Mater. Sci. Eng. B 127(2-3), 276–279 (2006).
[CrossRef]

Guo, B.

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Han, B.

Haranath, D.

P. B. Wagh, A. V. Rao, and D. Haranath, “Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels,” Mater. Chem. Phys. 53(1), 41–47 (1998).
[CrossRef]

Hou, Y.

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Hunter, B. A.

H. Yamane, M. Shimada, and B. A. Hunter, “High-Temperature Neutron Diffraction Study of Y4Al2O9,” J. Solid State Chem. 141(2), 466–474 (1998).
[CrossRef]

Ikushima, A. J.

K. Saito and A. J. Ikushima, “ Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[CrossRef]

Jagannathan, R.

C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminium garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80(19), 3608 (2002).
[CrossRef]

Jung, I. Y.

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

Kang, Y. C.

Y. C. Kang, Y. S. Chung, and S. B. Park, “Preparation of YAG:Europium Red Phosphors by Spray Pyrolysis Using a Filter-Expansion Aerosol Generator,” J. Am. Ceram. Soc. 82, 2056 (1999).
[CrossRef]

Kim, D. K.

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

Kim, S. S.

K. S. Sohn, S. S. Kim, and H. D. Park, “Lumnescence quenching in thermally-treated barium magnesium aluminate phosphor,” Appl. Phys. Lett. 81(10), 1759 (2002).
[CrossRef]

Kim, Y. C.

D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphor for 3D application of plasma display panels,” J. Lumin. 129(9), 1088–1093 (2009).
[CrossRef]

C. W. Cho, U. Paik, D. H. Park, Y. C. Kim, and D. S. Zang, “Design of fine phosphor system for thr improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoritical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Kirchner, K. W.

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

Kokubu, M.

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Kong, D. Y.

L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
[CrossRef]

Kono, T.

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Krupa, J. C.

M. Yin, W. Zhang, L. Lou, S. Xia, and J. C. Krupa, “Spectroscopic properties of Eu3+ ions in X1–Y2SiO5 at nanometric scale,” Physica B 254(1-2), 141–147 (1998).
[CrossRef]

Kweon, Y. M.

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

Lee, D. K.

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

Lee, S. G.

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

Lee, U.

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

Liang, H.

B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, and G. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express 17(9), 7138–7144 (2009).
[CrossRef] [PubMed]

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Liang, H. B.

H. M. Yang, J. X. Shi, H. B. Liang, and M. L. Gong, “Novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications,” J. Mater. Sci. Eng. B 127(2-3), 276–279 (2006).
[CrossRef]

Lin, H.

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Lin, J.

L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
[CrossRef]

Liu, X. M.

L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
[CrossRef]

Lou, L.

M. Yin, W. Zhang, L. Lou, S. Xia, and J. C. Krupa, “Spectroscopic properties of Eu3+ ions in X1–Y2SiO5 at nanometric scale,” Physica B 254(1-2), 141–147 (1998).
[CrossRef]

Lu, C. H.

C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminium garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80(19), 3608 (2002).
[CrossRef]

Lupei, V.

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping,” Appl. Phys. Lett. 81(15), 2677 (2002).
[CrossRef]

Malta, O. L.

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

Menezes, J. F. S.

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

Moine, B.

G. Bizarri and B. Moine, “On BaMgAl10O17: Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
[CrossRef]

Morton, D. C.

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

Ni, H.

Obata, M.

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Okazaki, C.

C. Okazaki, M. Shiiki, T. Suzuki, and K. Suzuki, “Luminescence saturation properties of PDP phosphors,” J. Lumin. 87-89, 1280–1282 (2000).
[CrossRef]

Onishi, T.

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Paik, U.

C. W. Cho, U. Paik, D. H. Park, Y. C. Kim, and D. S. Zang, “Design of fine phosphor system for thr improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoritical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Park, D. H.

D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphor for 3D application of plasma display panels,” J. Lumin. 129(9), 1088–1093 (2009).
[CrossRef]

C. W. Cho, U. Paik, D. H. Park, Y. C. Kim, and D. S. Zang, “Design of fine phosphor system for thr improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoritical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Park, H. D.

K. S. Sohn, S. S. Kim, and H. D. Park, “Lumnescence quenching in thermally-treated barium magnesium aluminate phosphor,” Appl. Phys. Lett. 81(10), 1759 (2002).
[CrossRef]

Park, S. B.

Y. C. Kang, Y. S. Chung, and S. B. Park, “Preparation of YAG:Europium Red Phosphors by Spray Pyrolysis Using a Filter-Expansion Aerosol Generator,” J. Am. Ceram. Soc. 82, 2056 (1999).
[CrossRef]

Pavel, N.

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping,” Appl. Phys. Lett. 81(15), 2677 (2002).
[CrossRef]

Quan, Z. W.

L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
[CrossRef]

Rainho, J. P.

J. P. Rainho, L. D. Carlos, and J. Rocha, “New phosphors based on Eu3+-doped microporous titanosilicates,” J. Lumin. 87-89, 1083–1086 (2000).
[CrossRef]

Rao, A. V.

P. B. Wagh, A. V. Rao, and D. Haranath, “Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels,” Mater. Chem. Phys. 53(1), 41–47 (1998).
[CrossRef]

Rao, R. P.

R. P. Rao and D. J. Devine, “RE-activated lanthanide phosphate phosphors for PDP applications,” J. Lumin. 87-89, 1260–1263 (2000).
[CrossRef]

Ravichandran, D.

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

Rocha, J.

J. P. Rainho, L. D. Carlos, and J. Rocha, “New phosphors based on Eu3+-doped microporous titanosilicates,” J. Lumin. 87-89, 1083–1086 (2000).
[CrossRef]

Ronda, C. R.

C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin. 49, 72 (1997).

Saito, K.

K. Saito and A. J. Ikushima, “ Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[CrossRef]

Shi, J.

Shi, J. X.

H. M. Yang, J. X. Shi, H. B. Liang, and M. L. Gong, “Novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications,” J. Mater. Sci. Eng. B 127(2-3), 276–279 (2006).
[CrossRef]

Shiiki, M.

C. Okazaki, M. Shiiki, T. Suzuki, and K. Suzuki, “Luminescence saturation properties of PDP phosphors,” J. Lumin. 87-89, 1280–1282 (2000).
[CrossRef]

Shimada, M.

H. Yamane, M. Shimada, and B. A. Hunter, “High-Temperature Neutron Diffraction Study of Y4Al2O9,” J. Solid State Chem. 141(2), 466–474 (1998).
[CrossRef]

Silve, F. R. G.

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

Sohn, K. S.

K. S. Sohn, S. S. Kim, and H. D. Park, “Lumnescence quenching in thermally-treated barium magnesium aluminate phosphor,” Appl. Phys. Lett. 81(10), 1759 (2002).
[CrossRef]

Sohn, S. H.

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

Song, J. H.

D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphor for 3D application of plasma display panels,” J. Lumin. 129(9), 1088–1093 (2009).
[CrossRef]

Su, Q.

B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, and G. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express 17(9), 7138–7144 (2009).
[CrossRef] [PubMed]

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Suzuki, K.

C. Okazaki, M. Shiiki, T. Suzuki, and K. Suzuki, “Luminescence saturation properties of PDP phosphors,” J. Lumin. 87-89, 1280–1282 (2000).
[CrossRef]

Suzuki, T.

C. Okazaki, M. Shiiki, T. Suzuki, and K. Suzuki, “Luminescence saturation properties of PDP phosphors,” J. Lumin. 87-89, 1280–1282 (2000).
[CrossRef]

Taira, T.

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping,” Appl. Phys. Lett. 81(15), 2677 (2002).
[CrossRef]

Tanamachi, N.

Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, “Ba5SiO4:Eu2+: An intense blue emission phosphor under vacumm ultraviolet and near-ultraviolet excitation,” Appl. Phys. Lett. 88(5), 051906 (2006).
[CrossRef]

Tanno, H.

Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, “Ba5SiO4:Eu2+: An intense blue emission phosphor under vacumm ultraviolet and near-ultraviolet excitation,” Appl. Phys. Lett. 88(5), 051906 (2006).
[CrossRef]

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Tian, Z.

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Uchiike, H.

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Vrito, H. F.

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

Wagh, P. B.

P. B. Wagh, A. V. Rao, and D. Haranath, “Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels,” Mater. Chem. Phys. 53(1), 41–47 (1998).
[CrossRef]

Wang, D. Y.

D. Y. Wang and Y. H. Wang, “Photoluminescence of Y4Al2O9:Re (Re= Tb3+, Eu3+) under VUV excitation,” J. Alloy. Comp. 425(1-2), L5–L7 (2006).
[CrossRef]

Wang, H.

G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
[CrossRef]

Wang, L. S.

L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
[CrossRef]

Wang, S.

G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
[CrossRef]

Wang, Y. H.

D. Y. Wang and Y. H. Wang, “Photoluminescence of Y4Al2O9:Re (Re= Tb3+, Eu3+) under VUV excitation,” J. Alloy. Comp. 425(1-2), L5–L7 (2006).
[CrossRef]

Xia, G.

G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
[CrossRef]

Xia, S.

M. Yin, W. Zhang, L. Lou, S. Xia, and J. C. Krupa, “Spectroscopic properties of Eu3+ ions in X1–Y2SiO5 at nanometric scale,” Physica B 254(1-2), 141–147 (1998).
[CrossRef]

Xu, J.

G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
[CrossRef]

Xu, Y. N.

W. Y. Ching and Y. N. Xu, “Nonscalability and nontransferbility in the eletronic properties of the Y-Al-O systems,” Phys. Rev. B 59(20), 12815 (1999).
[CrossRef]

Yamane, H.

H. Yamane, M. Shimada, and B. A. Hunter, “High-Temperature Neutron Diffraction Study of Y4Al2O9,” J. Solid State Chem. 141(2), 466–474 (1998).
[CrossRef]

Yang, G.

Yang, H. M.

H. M. Yang, J. X. Shi, H. B. Liang, and M. L. Gong, “Novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications,” J. Mater. Sci. Eng. B 127(2-3), 276–279 (2006).
[CrossRef]

Yang, J.

L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
[CrossRef]

Yin, M.

M. Yin, W. Zhang, L. Lou, S. Xia, and J. C. Krupa, “Spectroscopic properties of Eu3+ ions in X1–Y2SiO5 at nanometric scale,” Physica B 254(1-2), 141–147 (1998).
[CrossRef]

Yoon, D. H.

D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphor for 3D application of plasma display panels,” J. Lumin. 129(9), 1088–1093 (2009).
[CrossRef]

Zang, D. S.

D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphor for 3D application of plasma display panels,” J. Lumin. 129(9), 1088–1093 (2009).
[CrossRef]

C. W. Cho, U. Paik, D. H. Park, Y. C. Kim, and D. S. Zang, “Design of fine phosphor system for thr improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoritical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Zeng, Q.

Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, “Ba5SiO4:Eu2+: An intense blue emission phosphor under vacumm ultraviolet and near-ultraviolet excitation,” Appl. Phys. Lett. 88(5), 051906 (2006).
[CrossRef]

Zhang, G.

B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, and G. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express 17(9), 7138–7144 (2009).
[CrossRef] [PubMed]

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Zhang, J.

G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
[CrossRef]

Zhang, S.

Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, “Ba5SiO4:Eu2+: An intense blue emission phosphor under vacumm ultraviolet and near-ultraviolet excitation,” Appl. Phys. Lett. 88(5), 051906 (2006).
[CrossRef]

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Zhang, W.

M. Yin, W. Zhang, L. Lou, S. Xia, and J. C. Krupa, “Spectroscopic properties of Eu3+ ions in X1–Y2SiO5 at nanometric scale,” Physica B 254(1-2), 141–147 (1998).
[CrossRef]

Zhou, S.

G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
[CrossRef]

Appl. Phys. Lett. (7)

Q. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, and S. Zhang, “Ba5SiO4:Eu2+: An intense blue emission phosphor under vacumm ultraviolet and near-ultraviolet excitation,” Appl. Phys. Lett. 88(5), 051906 (2006).
[CrossRef]

K. S. Sohn, S. S. Kim, and H. D. Park, “Lumnescence quenching in thermally-treated barium magnesium aluminate phosphor,” Appl. Phys. Lett. 81(10), 1759 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping,” Appl. Phys. Lett. 81(15), 2677 (2002).
[CrossRef]

C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminium garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80(19), 3608 (2002).
[CrossRef]

J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, “Alkoxy sol-gel derived Y3–xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors,” Appl. Phys. Lett. 78(24), 3800 (2001).
[CrossRef]

I. Y. Jung, Y. Cho, S. G. Lee, S. H. Sohn, D. K. Kim, D. K. Lee, and Y. M. Kweon, “Optical properties of BaMgAl10O17:Eu2+ phosphor coated with SiO2 for a plasma display panel,” Appl. Phys. Lett. 87(19), 191908 (2005).
[CrossRef]

C. W. Cho, U. Paik, D. H. Park, Y. C. Kim, and D. S. Zang, “Design of fine phosphor system for thr improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoritical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

J. Alloy. Comp. (1)

D. Y. Wang and Y. H. Wang, “Photoluminescence of Y4Al2O9:Re (Re= Tb3+, Eu3+) under VUV excitation,” J. Alloy. Comp. 425(1-2), L5–L7 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

Y. C. Kang, Y. S. Chung, and S. B. Park, “Preparation of YAG:Europium Red Phosphors by Spray Pyrolysis Using a Filter-Expansion Aerosol Generator,” J. Am. Ceram. Soc. 82, 2056 (1999).
[CrossRef]

J. Lumin. (8)

R. P. Rao and D. J. Devine, “RE-activated lanthanide phosphate phosphors for PDP applications,” J. Lumin. 87-89, 1260–1263 (2000).
[CrossRef]

G. Bizarri and B. Moine, “On BaMgAl10O17: Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin. 113(3-4), 199–213 (2005).
[CrossRef]

C. Okazaki, M. Shiiki, T. Suzuki, and K. Suzuki, “Luminescence saturation properties of PDP phosphors,” J. Lumin. 87-89, 1280–1282 (2000).
[CrossRef]

C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin. 49, 72 (1997).

L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, “Luminescence properties of Y0.9−xGdxEu0.1Al3(BO3)4 (0≤x≤0.9) phosphors prepared by spray pyrolysis process,” J. Lumin. 122-123, 36–39 (2007).
[CrossRef]

O. L. Malta, H. F. Vrito, J. F. S. Menezes, F. R. G. Silve, S. Alves, F. S. Farias, and A. V. M. Andrade, “Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model,” J. Lumin. 75(3), 255–268 (1997).
[CrossRef]

D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphor for 3D application of plasma display panels,” J. Lumin. 129(9), 1088–1093 (2009).
[CrossRef]

J. P. Rainho, L. D. Carlos, and J. Rocha, “New phosphors based on Eu3+-doped microporous titanosilicates,” J. Lumin. 87-89, 1083–1086 (2000).
[CrossRef]

J. Mater. Sci. Eng. B (1)

H. M. Yang, J. X. Shi, H. B. Liang, and M. L. Gong, “Novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications,” J. Mater. Sci. Eng. B 127(2-3), 276–279 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, and J. Xu, “Sol–gel combustion synthesis and luminescence of Y4Al2O9:Eu3+ nanocrystal,” J. Non-Cryst. Solids 351(37-39), 2979–2982 (2005).
[CrossRef]

J. Phys. D Appl. Phys. (1)

J. P. Boeuf, “Plasma display panels:physics, recent developments and key issues,” J. Phys. D Appl. Phys. 36(6), R53–R79 (2003).
[CrossRef]

J. Solid State Chem. (2)

H. Yamane, M. Shimada, and B. A. Hunter, “High-Temperature Neutron Diffraction Study of Y4Al2O9,” J. Solid State Chem. 141(2), 466–474 (1998).
[CrossRef]

Z. Tian, H. Liang, H. Lin, Q. Su, B. Guo, G. Zhang, and Y. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, “ Effect of Nonstoichiometry on the Deterioration of Eu 2+ -Doped Hexagonal Aluminate Phosphor for Plasma Display Applications, ” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 477–480 (2003).
[CrossRef]

Mater. Chem. Phys. (1)

P. B. Wagh, A. V. Rao, and D. Haranath, “Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels,” Mater. Chem. Phys. 53(1), 41–47 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

W. Y. Ching and Y. N. Xu, “Nonscalability and nontransferbility in the eletronic properties of the Y-Al-O systems,” Phys. Rev. B 59(20), 12815 (1999).
[CrossRef]

K. Saito and A. J. Ikushima, “ Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[CrossRef]

Physica B (1)

M. Yin, W. Zhang, L. Lou, S. Xia, and J. C. Krupa, “Spectroscopic properties of Eu3+ ions in X1–Y2SiO5 at nanometric scale,” Physica B 254(1-2), 141–147 (1998).
[CrossRef]

Other (3)

JCPDS card no. 22–0987.

I. Y. Jung, Soc. Inform. Display Digest, 1325 (2007).

S. Shionoya, and W. M. Yen, eds., Phosphor Handbook, (CRC Press, NY, 1999), p. 629.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD pattern of prepared YAM:Eu3+ PDP phosphor

Fig. 2
Fig. 2

SEM micrograph of as synthesized YAM:Eu3+ phosphor sample.

Fig. 3
Fig. 3

TEM image of silica coated YAM:Eu3+ particles.

Fig. 4
Fig. 4

(color online) Room-temperature emission of YAM: 0.2Eu3+ (Red line) phosphor and commercial YGB:Eu3+ (Blue line) phosphor (λex = 250 nm). The inset shows integrated emission intensity of the same phosphors.

Fig. 5
Fig. 5

(color online) Room-temperature PL spectra of prepared YAM:Eu3+ (a) at 147 nm excitation and (b) at 172 nm excitation. Inset in (a) shows the CIE chromaticity diagram where triangle and star denotes CIE coordinates (λex = 147 nm) of commercially used YGB:Eu3+ and prepared YAM:Eu3+ phosphor respectively, circle denotes CIE coordinates (λex = 172 nm) of YAM:Eu3+. Inset in (b) shows YGB:Eu3+ emission at 172 nm excitation.

Fig. 6
Fig. 6

(color online) Time-resolved PL decay spectrum of 612 nm 5D0-7F2 luminescence of Eu3+ in (a) as prepared YAM host (red line) and (b) commercially used YGB host (blue line) at 300 K.

Metrics