Abstract

We experimentally demonstrate complete compensation of pulse broadening in an amplifier-based slow light system. The configuration of the delay line basically consists of two stages: a conventional Brillouin slow light system and a nonlinear regeneration element. Signal pulses experienced both time delay and temporal broadening through the Brillouin delay line and then the delayed pulses were delivered into a nonlinear optical loop mirror. Due to the nonlinear response of the transmission of the fiber loop, the inevitably broadened pulses were moderately compressed in the output of the loop, without loss in the capacity to delay the pulses. The overall result is that, for the maximum delay, the width of the pulse could be kept below the input width while the time delays introduced by the slow light element were preserved. Using this delay line, a signal pulse with duration of 27 ns at full width at half maximum was delayed up to 1.3-bits without suffering from signal distortion.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ light," in Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2002), Vol. 43, Chap. 6, pp. 497-530.
    [CrossRef]
  2. J. B. Khurgin and R. S. Tucker, Slow light: Science and applications (CRC Press, Boca Raton, 2009).
  3. M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express,  14, 1395-1400 (2005).
    [CrossRef]
  4. S. Chin, M. G. Herraez, and L. Thevenaz, "Simple technique to achieve fast light in gain regime using Brillouin scattering," Opt. Express,  15, 10814-10821 (2007).
    [CrossRef] [PubMed]
  5. A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," Photon. Technol. Lett. 19, 462-464 (2007).
    [CrossRef]
  6. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008).
    [CrossRef] [PubMed]
  7. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005).
    [CrossRef] [PubMed]
  8. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, "Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber," J. Opt. Soc. Am. B 22, 2378-2384 (2005).
  9. M. Lee, R. Pant, and M. A. Neifeld, "Improved slow-light delay performance of a broadband stimulated Brillouin scattering system using fiber Bragg gratings," Appl. Opt. 47, 6404-6415 (2008).
    [CrossRef] [PubMed]
  10. J. T. Mok, C, M. Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature 2, 775-780 (2006).
  11. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, "Dynamically tuned coupled-resonator delay lines can be nearly dispersion free," Opt. Lett. 31, 1985-1987 (2006).
    [CrossRef] [PubMed]
  12. S. Chin and L. Thevenaz, "Optimized shaping of isolated pulses in Brillouin fiber slow light systems," Opt. Lett. 34, 707-709 (2009).
    [CrossRef] [PubMed]
  13. M. D. Stenner and M. A. Neifeld, "Optimal pulse design for communication-oriented slow-light pulse detection," Opt. Express 16, 651-662 (2008).
    [CrossRef] [PubMed]
  14. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  15. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B 22, 1062 - 1073 (2005).
    [CrossRef]
  16. D. A. B. Miller, "Fundamental Limit to Linear One-Dimensional Slow Light Structures," Phys. Rev. Lett. 99,203903 (2007).
    [CrossRef]
  17. M. Gonzalez-Herraez and L. Thévenaz "Physical limits to broadening compensation in linear slow light systems," Optics Express 17, 4732-4739 (2009).
    [CrossRef] [PubMed]
  18. A. Wiatrek, R. Henker, S. Preussler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider," Opt. Express 17, 797-802 (2009).
    [CrossRef] [PubMed]
  19. N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. 13, 56-58 (1988).
    [CrossRef] [PubMed]
  20. K. Smith, N. J. Doran, and P. G. H. Wigley, "Pulse shaping, compression and pedestal suppression employing a nonlinear optical loop mirror," Opt. Lett. 15, 1294-1296 (1990).
    [CrossRef] [PubMed]

2009

2008

2007

S. Chin, M. G. Herraez, and L. Thevenaz, "Simple technique to achieve fast light in gain regime using Brillouin scattering," Opt. Express,  15, 10814-10821 (2007).
[CrossRef] [PubMed]

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," Photon. Technol. Lett. 19, 462-464 (2007).
[CrossRef]

D. A. B. Miller, "Fundamental Limit to Linear One-Dimensional Slow Light Structures," Phys. Rev. Lett. 99,203903 (2007).
[CrossRef]

2006

J. T. Mok, C, M. Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature 2, 775-780 (2006).

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, "Dynamically tuned coupled-resonator delay lines can be nearly dispersion free," Opt. Lett. 31, 1985-1987 (2006).
[CrossRef] [PubMed]

2005

1990

1988

Ammann, M. J.

Boyd, R. W.

Chin, S.

Dawes, A. M. C.

Doran, N. J.

Eyal, A.

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," Photon. Technol. Lett. 19, 462-464 (2007).
[CrossRef]

Fan, S.

Gaeta, A. L.

Gauthier, D. J.

Gonzalez-Herraez, M.

M. Gonzalez-Herraez and L. Thévenaz "Physical limits to broadening compensation in linear slow light systems," Optics Express 17, 4732-4739 (2009).
[CrossRef] [PubMed]

Henker, R.

Herraez, M. G.

Herráez, M. G.

Khurgin, J. B.

J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B 22, 1062 - 1073 (2005).
[CrossRef]

Lee, M.

Miller, D. A. B.

D. A. B. Miller, "Fundamental Limit to Linear One-Dimensional Slow Light Structures," Phys. Rev. Lett. 99,203903 (2007).
[CrossRef]

Mok, J. T.

J. T. Mok, C, M. Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature 2, 775-780 (2006).

Neifeld, M. A.

Okawachi, Y.

Pant, R.

Povinelli, M. L.

Preussler, S.

Raz, O.

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," Photon. Technol. Lett. 19, 462-464 (2007).
[CrossRef]

Sandhu, S.

Schneider, T.

Schwarzbacher, A. T.

Sharping, J. E.

Smith, K.

Song, K. Y.

Stenner, M. D.

Thevenaz, L.

Thévenaz, L.

M. Gonzalez-Herraez and L. Thévenaz "Physical limits to broadening compensation in linear slow light systems," Optics Express 17, 4732-4739 (2009).
[CrossRef] [PubMed]

M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express,  14, 1395-1400 (2005).
[CrossRef]

Tur, M.

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," Photon. Technol. Lett. 19, 462-464 (2007).
[CrossRef]

Wiatrek, A.

Wigley, P. G. H.

Willner, A. E.

Wood, D.

Yanik, M. F.

Zadok, A.

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," Photon. Technol. Lett. 19, 462-464 (2007).
[CrossRef]

Zhu, Z.

Appl. Opt.

J. Opt. Soc. Am. B

J. Opt. Soc. Amer. B

J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B 22, 1062 - 1073 (2005).
[CrossRef]

Nature

J. T. Mok, C, M. Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature 2, 775-780 (2006).

Opt. Express

Opt. Lett.

Optics Express

M. Gonzalez-Herraez and L. Thévenaz "Physical limits to broadening compensation in linear slow light systems," Optics Express 17, 4732-4739 (2009).
[CrossRef] [PubMed]

Photon. Technol. Lett.

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," Photon. Technol. Lett. 19, 462-464 (2007).
[CrossRef]

Phys. Rev. A

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Phys. Rev. Lett.

D. A. B. Miller, "Fundamental Limit to Linear One-Dimensional Slow Light Structures," Phys. Rev. Lett. 99,203903 (2007).
[CrossRef]

Other

R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ light," in Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2002), Vol. 43, Chap. 6, pp. 497-530.
[CrossRef]

J. B. Khurgin and R. S. Tucker, Slow light: Science and applications (CRC Press, Boca Raton, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of an attenuation imbalanced nonlinear optical fiber loop to compress the shape of a pulse. E 1 and E 2 present clock and counter-clock wise electric fields of signals, respectively. DSF; dispersion shifted fiber, PC; polarization controller and α; an attenuation factor.

Fig. 2.
Fig. 2.

Experimental setup to produce non-broadening pulse delays, by combining a nonlinear generation element with a typical Brillouin slow light system. EDFA; erbium doped fiber amplifier, EOM; electro-optic modulator, FBG; fiber Bragg grating, VOA; variable optical attenuator, DSF; dispersion shifted fiber, PC; polarization controller and α; an attenuation factor.

Fig. 3.
Fig. 3.

(a) Normalized waveforms of pulses that experienced time delays through SBS slow light and (b) normalized waveforms of transmitted pulses through a saturable absorber, showing noticeable pulse compression.

Fig. 4.
Fig. 4.

Factional delays and broadening factors of signal pulses, respectively, with square and star symbols as a function of signal gain when the nonlinear loop mirror is present (filled symbols) or absent (opened symbols).

Metrics