Abstract

The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Povinelli, M. Ibanescu, S. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004), http://link.aip.org/link/?APL/85/1466/1 .
    [CrossRef]
  2. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005), http://ol.osa.org/abstract.cfm?URI=ol-30-22-3042 .
    [CrossRef] [PubMed]
  3. M. L. Povinelli, S. G. Johnson, M. Lončar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13(20), 8286–8295 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-20-8286 .
    [CrossRef] [PubMed]
  4. A. Mizrahi and L. Schächter, “Two-slab all-optical spring,” Opt. Lett. 32(6), 692–694 (2007), http://ol.osa.org/abstract.cfm?URI=ol-32-6-692 .
    [CrossRef] [PubMed]
  5. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces,” Nat. Photon. 1, 416–422 (2007), http://dx.doi.org/10.1038/nphoton.2007.96 .
  6. J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008), http://link.aip.org/link/?APL/92/251109/1 .
    [CrossRef]
  7. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
    [CrossRef] [PubMed]
  8. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
    [CrossRef]
  9. W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-3-1806 .
    [CrossRef] [PubMed]
  10. M. Eichenfield, J. Chan, R. Camacho, K. J. Vahala, and O. Painter, “Optomechanical Crystals,” http://arxiv.org/abs/0906.1236 .
  11. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces”, http://arxiv.org/abs/0904.0794 .
  12. V. N. Astratov, J. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. de la Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17(11), 2050–2057 (1999).
    [CrossRef]
  13. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002), http://link.aps.org/doi/10.1103/PhysRevB.65.235112 .
    [CrossRef]
  14. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001), http://link.aps.org/doi/10.1103/PhysRevB.63.125107 .
    [CrossRef]
  15. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003), http://link.aip.org/link/?APL/82/1999/1 .
    [CrossRef]
  16. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-11-1209 .
    [CrossRef] [PubMed]
  17. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2610 .
    [CrossRef]
  18. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008), http://link.aps.org/doi/10.1103/PhysRevB.77.035324 .
    [CrossRef]
  19. M. I. Antonoyiannakis and J. B. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60(4), 2363–2374 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2363 .
    [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1998).
  21. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-569 .
    [CrossRef]
  22. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173 .
    [CrossRef] [PubMed]
  23. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005), http://link.aip.org/link/?JAPIAU/98/033102/1 .
    [CrossRef]
  24. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  25. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
    [CrossRef] [PubMed]
  26. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006), http://link.aip.org/link/?APPLAB/89/253114/1 .
    [CrossRef]

2009 (1)

2008 (4)

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008), http://link.aip.org/link/?APL/92/251109/1 .
[CrossRef]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
[CrossRef] [PubMed]

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008), http://link.aps.org/doi/10.1103/PhysRevB.77.035324 .
[CrossRef]

2007 (1)

2006 (2)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
[CrossRef] [PubMed]

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006), http://link.aip.org/link/?APPLAB/89/253114/1 .
[CrossRef]

2005 (3)

2004 (2)

M. L. Povinelli, M. Ibanescu, S. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004), http://link.aip.org/link/?APL/85/1466/1 .
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-11-1209 .
[CrossRef] [PubMed]

2003 (2)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-569 .
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003), http://link.aip.org/link/?APL/82/1999/1 .
[CrossRef]

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002), http://link.aps.org/doi/10.1103/PhysRevB.65.235112 .
[CrossRef]

2001 (2)

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001), http://link.aps.org/doi/10.1103/PhysRevB.63.125107 .
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173 .
[CrossRef] [PubMed]

1999 (3)

M. I. Antonoyiannakis and J. B. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60(4), 2363–2374 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2363 .
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2610 .
[CrossRef]

V. N. Astratov, J. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. de la Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17(11), 2050–2057 (1999).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Almeida, V. R.

Andreani, L. C.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008), http://link.aps.org/doi/10.1103/PhysRevB.77.035324 .
[CrossRef]

Antonoyiannakis, M. I.

M. I. Antonoyiannakis and J. B. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60(4), 2363–2374 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2363 .
[CrossRef]

Astratov, V. N.

Baehr-Jones, T.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
[CrossRef] [PubMed]

Barrios, C. A.

Barth, M.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006), http://link.aip.org/link/?APPLAB/89/253114/1 .
[CrossRef]

Benson, O.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006), http://link.aip.org/link/?APPLAB/89/253114/1 .
[CrossRef]

Capasso, F.

Chan, C. T.

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008), http://link.aip.org/link/?APL/92/251109/1 .
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2610 .
[CrossRef]

Culshaw, J. S.

de la Rue, R. M.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
[CrossRef] [PubMed]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005), http://link.aip.org/link/?JAPIAU/98/033102/1 .
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003), http://link.aip.org/link/?APL/82/1999/1 .
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-569 .
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002), http://link.aps.org/doi/10.1103/PhysRevB.65.235112 .
[CrossRef]

Gerace, D.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008), http://link.aps.org/doi/10.1103/PhysRevB.77.035324 .
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Hochberg, M.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
[CrossRef] [PubMed]

Ibanescu, M.

Joannopoulos, J. D.

M. L. Povinelli, S. G. Johnson, M. Lončar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13(20), 8286–8295 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-20-8286 .
[CrossRef] [PubMed]

M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005), http://ol.osa.org/abstract.cfm?URI=ol-30-22-3042 .
[CrossRef] [PubMed]

M. L. Povinelli, M. Ibanescu, S. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004), http://link.aip.org/link/?APL/85/1466/1 .
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-569 .
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002), http://link.aps.org/doi/10.1103/PhysRevB.65.235112 .
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173 .
[CrossRef] [PubMed]

Johnson, S.

M. L. Povinelli, M. Ibanescu, S. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004), http://link.aip.org/link/?APL/85/1466/1 .
[CrossRef]

Johnson, S. G.

Krauss, T. F.

Kuga, T.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

Kuramochi, E.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

Li, M.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-3-1806 .
[CrossRef] [PubMed]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
[CrossRef] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-11-1209 .
[CrossRef] [PubMed]

Liscidini, M.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008), http://link.aps.org/doi/10.1103/PhysRevB.77.035324 .
[CrossRef]

Loncar, M.

Mizrahi, A.

Ng, J.

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008), http://link.aip.org/link/?APL/92/251109/1 .
[CrossRef]

Notomi, M.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

Ochiai, T.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001), http://link.aps.org/doi/10.1103/PhysRevB.63.125107 .
[CrossRef]

Pendry, J. B.

M. I. Antonoyiannakis and J. B. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60(4), 2363–2374 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2363 .
[CrossRef]

Pernice, W. H.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
[CrossRef] [PubMed]

Pernice, W. H. P.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
[CrossRef] [PubMed]

M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005), http://ol.osa.org/abstract.cfm?URI=ol-30-22-3042 .
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, M. Lončar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13(20), 8286–8295 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-20-8286 .
[CrossRef] [PubMed]

M. L. Povinelli, M. Ibanescu, S. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004), http://link.aip.org/link/?APL/85/1466/1 .
[CrossRef]

Sakoda, K.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001), http://link.aps.org/doi/10.1103/PhysRevB.63.125107 .
[CrossRef]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
[CrossRef] [PubMed]

Schächter, L.

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
[CrossRef] [PubMed]

Sipe, J. E.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008), http://link.aps.org/doi/10.1103/PhysRevB.77.035324 .
[CrossRef]

Skolnick, M. S.

Smythe, E. J.

Solgaard, O.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005), http://link.aip.org/link/?JAPIAU/98/033102/1 .
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003), http://link.aip.org/link/?APL/82/1999/1 .
[CrossRef]

Stevenson, R. M.

Suh, W.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005), http://link.aip.org/link/?JAPIAU/98/033102/1 .
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003), http://link.aip.org/link/?APL/82/1999/1 .
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-569 .
[CrossRef]

Tang, H. X.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-3-1806 .
[CrossRef] [PubMed]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
[CrossRef] [PubMed]

Taniyama, H.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

Torii, Y.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2610 .
[CrossRef]

V. N. Astratov, J. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. de la Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17(11), 2050–2057 (1999).
[CrossRef]

Xiong, C.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
[CrossRef] [PubMed]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
[CrossRef] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-11-1209 .
[CrossRef] [PubMed]

Yamamoto, T.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

Yanik, M. F.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003), http://link.aip.org/link/?APL/82/1999/1 .
[CrossRef]

Yoshikawa, Y.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

Appl. Phys. Lett. (4)

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett. 92(25), 251109 (2008), http://link.aip.org/link/?APL/92/251109/1 .
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003), http://link.aip.org/link/?APL/82/1999/1 .
[CrossRef]

M. L. Povinelli, M. Ibanescu, S. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004), http://link.aip.org/link/?APL/85/1466/1 .
[CrossRef]

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006), http://link.aip.org/link/?APPLAB/89/253114/1 .
[CrossRef]

J. Appl. Phys. (1)

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005), http://link.aip.org/link/?JAPIAU/98/033102/1 .
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nature (1)

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008), http://dx.doi.org/10.1038/nature07545 .
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (6)

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.165129 .
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002), http://link.aps.org/doi/10.1103/PhysRevB.65.235112 .
[CrossRef]

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001), http://link.aps.org/doi/10.1103/PhysRevB.63.125107 .
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2610 .
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008), http://link.aps.org/doi/10.1103/PhysRevB.77.035324 .
[CrossRef]

M. I. Antonoyiannakis and J. B. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60(4), 2363–2374 (1999), http://link.aps.org/doi/10.1103/PhysRevB.60.2363 .
[CrossRef]

Phys. Rev. Lett. (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006), http://link.aps.org/abstract/PRL/v96/e123901 .
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Other (4)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces,” Nat. Photon. 1, 416–422 (2007), http://dx.doi.org/10.1038/nphoton.2007.96 .

M. Eichenfield, J. Chan, R. Camacho, K. J. Vahala, and O. Painter, “Optomechanical Crystals,” http://arxiv.org/abs/0906.1236 .

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces”, http://arxiv.org/abs/0904.0794 .

J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the double slab system. The red arrows indicate the directions of the incident light. Each slab consists of an array of high index rods ( ε = 12 ) surrounded by air ( ε = 1 ). The empty rectangle indicates the surface over which the integration of the stress tensor is performed. In the right panel, the bottom slab is shifted relative to the first slab by a distance Δ x .

Fig. 2
Fig. 2

Lateral and normal forces as functions of relative shift in the horizontal direction between the slabs. The vertical spacing between the slabs is d = 0.5a. The forces are periodic with respect to the displacement. Only one period in Δ x is shown. (a) Far from resonance at ω = 0.57 × 2 π c / a . (b) Near resonance at ω = 0.58 × 2 π c / a . Note the vastly different vertical scales.

Fig. 3
Fig. 3

Dark state arising from coupled bright guided resonances: (a) Single slab transmission spectrum; the arrow indicates the frequency of a Fano resonance mode. (b) Mode profile calculated by MPB (top) and field profile computed with SMM at the frequency indicated by the arrow in (a) (bottom). (c) Double slab transmission spectrum for d = 0.5a. (d) Field profile at frequency indicated by the arrow in (c). (e) Double slab transmission spectrum for d = 0.65 a ; note the extremely sharp resonance peak. (f) Field profile at peak of resonance in (e).

Fig. 4
Fig. 4

Dark states in the two-slab system that arise from coupled dark resonances from single slabs: (a) Single slab transmission spectrum; the arrow indicates the frequency of a dark state. (b) Mode profile calculated from MPB at the dark state frequency (top) and field profile computed with SMM at the frequency indicated by the arrow in (a) (bottom). (c) Double slab transmission spectrum for d = 0.5 a . (d) Field profile at frequency indicated by the arrow in (a). (e) Double slab transmission spectrum for Δ x = 0.15 a ; note the appearance of pairs of sharp resonances. (f) Field profile at lowest frequency resonance from (e).

Fig. 5
Fig. 5

Resonance peak and linewidth in the vicinity of the dark state arising from coupled bright resonances (Case 1).

Fig. 6
Fig. 6

Divergence behavior of normal force on resonance compared to the Q as the slab spacing is varied away from the dark state in Case 1. For reference, the force variation at a constant frequency near the dark state frequency is also plotted with a dashed line.

Fig. 7
Fig. 7

Resonance peak and linewidth in the vicinity of the dark state arising from coupled dark resonances (Case 2). One of the pair of resonances has a Q much higher than the other, causing its FWHM to appear negligible.

Fig. 8
Fig. 8

Divergence behavior of normal and lateral forces on resonance compared to the Q for various shifts near the symmetry point Δ x = 0 for Case 2.

Fig. 9
Fig. 9

Resonance peak and linewidth in the vicinity of the dark state for Case 3 at Δ x = 0.2 a .

Fig. 10
Fig. 10

Divergence behavior of normal and lateral forces on resonance compared to the Q for various slab spacings near the dark state corresponding to ω = 0.583 × 2 π c / a and Δ x = 0.2 a in Fig. 9.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

u n,m ( r , z ) = G u n,m ( G ) exp [ i ( k + G ) r ] exp [ i q n , m z ]
E n ( G , z ) = m u n , m ( G ) [ a n , m exp ( i q n , m z ) + b n , m exp ( i q n , m z ) ]
F α = T α β d S β
T α β = 1 2 [ E α D β * + H α B β * 1 2 δ α β ( E γ D γ * + H γ B γ * ) ]
E ( z ) = G e ( G ) exp [ i ( k + G ) r ]
1 2 E α D z * d S z = 1 2 G G e α ( G ) d z * ( G ) exp [ i G r ] exp [ i G r ] d S z = A 2 G e α ( G ) d z * ( G )
A 2 G [ e α ( G ) d z * ( G ) + h α ( G ) b z * ( G ) 1 2 δ α z ( e γ ( G ) d γ * ( G ) + h γ ( G ) b γ * ( G ) ) ]
F x ( Δ x ) = F x ( Δ x + a ) F z ( Δ x ) = F z ( Δ x + a )
F z ( Δ x ) = F z ( Δ x ) F z ( Δ x ) = F z ( a Δ x )
F x ( Δ x ) = F x ( Δ x ) F x ( Δ x ) = F x ( a Δ x )

Metrics