Abstract

We demonstrate continuous infrared spectra from 20 nm sample spots, by combining dispersive Fourier-transform infrared spectroscopy (FTIR) with scattering near-field microscopy (s-SNOM). With the “apertureless” tip of a standard AFM cantilever in one arm of a Michelson interferometer the spectra arise simultaneously in amplitude and phase. The effect of near-field phonon resonance of SiC is used to verify background-free s-SNOM operation, and to determine the absolute scattering efficiency, at 6 cm−1 spectral resolution. We further report first evidence of free-induction decay from a scatterer composed of parts coupled by near-fields. This is possible only with broadband illumination. It offers a new, unique tool to discriminate against background scattering artifacts.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Keilmann, and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. Zayats and D. Richards, eds. (ArtechHouse, 2009).
  2. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
    [CrossRef] [PubMed]
  3. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
    [CrossRef]
  4. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
    [CrossRef] [PubMed]
  5. T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064–5066 (2004).
    [CrossRef]
  6. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
    [CrossRef] [PubMed]
  7. I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
    [CrossRef]
  8. K. Mueller, X. Yang, M. Paulite, Z. Fakhraai, N. Gunari, and G. C. Walker, “Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy,” Langmuir 24(13), 6946–6951 (2008).
    [CrossRef] [PubMed]
  9. M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14(23), 11222–11233 (2006).
    [CrossRef] [PubMed]
  10. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudo-heterodyne detection for background-free near-field spectroscopy,” App. Phys. Lett. 89, 101124–101121 - 101124–101123 (2006).
  11. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
    [CrossRef]
  12. H. G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16(5), 3430–3438 (2008).
    [CrossRef] [PubMed]
  13. M. Brehm, A. Schliesser, F. Cajko, I. Tsukerman, and F. Keilmann, “Antenna-mediated back-scattering efficiency in infrared near-field microscopy,” Opt. Express 16(15), 11203–11215 (2008).
    [CrossRef] [PubMed]
  14. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
    [CrossRef]
  15. A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
    [CrossRef] [PubMed]
  16. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
    [CrossRef] [PubMed]
  17. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
    [CrossRef] [PubMed]
  18. F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194(2-3), 567–570 (1999).
    [CrossRef] [PubMed]
  19. M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett . 93, 137404 (2004).
    [CrossRef] [PubMed]
  20. P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. H. Chang, W. Ihe, S. C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys . 101, 64303–64308 (2007).
    [CrossRef]
  21. N. Ocelic, “Quantitative near-field phonon-polariton spectroscopy,” Thesis Technische Universität München, ISBN 9783932749896 (2007).
  22. R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).
  23. R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
    [CrossRef]
  24. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
    [CrossRef]
  25. A. Huber, N. Ocelic, D. Kazentsev, and R. Hillenbrand, “Near-field imaging of mid-infrared surface phonon polariton propagation,” Appl. Phys. Lett . 87, 81103 (2005).
    [CrossRef]

2009 (2)

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[CrossRef]

2008 (3)

2007 (4)

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14(23), 11222–11233 (2006).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

2004 (2)

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064–5066 (2004).
[CrossRef]

2003 (1)

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

2001 (1)

R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).

2000 (1)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

1999 (1)

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194(2-3), 567–570 (1999).
[CrossRef] [PubMed]

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Basov, D. N.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Brehm, M.

H. G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16(5), 3430–3438 (2008).
[CrossRef] [PubMed]

M. Brehm, A. Schliesser, F. Cajko, I. Tsukerman, and F. Keilmann, “Antenna-mediated back-scattering efficiency in infrared near-field microscopy,” Opt. Express 16(15), 11203–11215 (2008).
[CrossRef] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14(23), 11222–11233 (2006).
[CrossRef] [PubMed]

Bründermann, E.

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
[CrossRef]

Cajko, F.

Chae, B. G.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Crozier, K.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[CrossRef]

Cvitkovic, A.

Drachenko, O.

Fakhraai, Z.

K. Mueller, X. Yang, M. Paulite, Z. Fakhraai, N. Gunari, and G. C. Walker, “Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy,” Langmuir 24(13), 6946–6951 (2008).
[CrossRef] [PubMed]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[CrossRef]

Grunwald, C.

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
[CrossRef]

Gunari, N.

K. Mueller, X. Yang, M. Paulite, Z. Fakhraai, N. Gunari, and G. C. Walker, “Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy,” Langmuir 24(13), 6946–6951 (2008).
[CrossRef] [PubMed]

Hanarp, P.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

Havenith, M.

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
[CrossRef]

Helm, M.

Hillenbrand, R.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[CrossRef]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[CrossRef] [PubMed]

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064–5066 (2004).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).

Ho, P. C.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Huber, A.

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

Huber, A. J.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[CrossRef]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

Kazantsev, D.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

Keilmann, F.

M. Brehm, A. Schliesser, F. Cajko, I. Tsukerman, and F. Keilmann, “Antenna-mediated back-scattering efficiency in infrared near-field microscopy,” Opt. Express 16(15), 11203–11215 (2008).
[CrossRef] [PubMed]

H. G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16(5), 3430–3438 (2008).
[CrossRef] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14(23), 11222–11233 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064–5066 (2004).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194(2-3), 567–570 (1999).
[CrossRef] [PubMed]

Kim, B. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Kim, H. T.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

Köck, T.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Kopf, I.

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
[CrossRef]

Maple, M. B.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Mueller, K.

K. Mueller, X. Yang, M. Paulite, Z. Fakhraai, N. Gunari, and G. C. Walker, “Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy,” Langmuir 24(13), 6946–6951 (2008).
[CrossRef] [PubMed]

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[CrossRef] [PubMed]

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

Paulite, M.

K. Mueller, X. Yang, M. Paulite, Z. Fakhraai, N. Gunari, and G. C. Walker, “Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy,” Langmuir 24(13), 6946–6951 (2008).
[CrossRef] [PubMed]

Qazilbash, M. M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Samson, J. S.

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
[CrossRef]

Schliesser, A.

Schnell, M.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[CrossRef]

Sutherland, D. S.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

Taubner, T.

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064–5066 (2004).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Tsukerman, I.

van der Weide, D. W.

von Ribbeck, H. G.

Walker, G. C.

K. Mueller, X. Yang, M. Paulite, Z. Fakhraai, N. Gunari, and G. C. Walker, “Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy,” Langmuir 24(13), 6946–6951 (2008).
[CrossRef] [PubMed]

Winnerl, S.

Wittborn, J.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

Wollny, G.

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
[CrossRef]

Yang, X.

K. Mueller, X. Yang, M. Paulite, Z. Fakhraai, N. Gunari, and G. C. Walker, “Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy,” Langmuir 24(13), 6946–6951 (2008).
[CrossRef] [PubMed]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Ziegler, A.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

Appl. Phys. B (1)

R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).

Appl. Phys. Lett. (2)

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064–5066 (2004).
[CrossRef]

J. Microsc. (1)

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194(2-3), 567–570 (1999).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Bründermann, and M. Havenith, “Chemical imaging of microstructured self-assembled monolayers with nanometer resolution,” J. Phys. Chem. C 111(23), 8166–8171 (2007).
[CrossRef]

Langmuir (1)

K. Mueller, X. Yang, M. Paulite, Z. Fakhraai, N. Gunari, and G. C. Walker, “Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy,” Langmuir 24(13), 6946–6951 (2008).
[CrossRef] [PubMed]

Nano Lett. (3)

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[CrossRef]

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

Opt. Express (4)

Science (1)

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Other (6)

F. Keilmann, and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. Zayats and D. Richards, eds. (ArtechHouse, 2009).

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudo-heterodyne detection for background-free near-field spectroscopy,” App. Phys. Lett. 89, 101124–101121 - 101124–101123 (2006).

A. Huber, N. Ocelic, D. Kazentsev, and R. Hillenbrand, “Near-field imaging of mid-infrared surface phonon polariton propagation,” Appl. Phys. Lett . 87, 81103 (2005).
[CrossRef]

M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett . 93, 137404 (2004).
[CrossRef] [PubMed]

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. H. Chang, W. Ihe, S. C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys . 101, 64303–64308 (2007).
[CrossRef]

N. Ocelic, “Quantitative near-field phonon-polariton spectroscopy,” Thesis Technische Universität München, ISBN 9783932749896 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of spectroscopic near-field microscope where the back-scattering probe tip represents one end mirror of a dispersive Michelson interferometer. A mirror in the reference arm is mechanically translated to record an interferogram which is then Fourier-transformed to determine both amplitude and phase spectra.

Fig. 2
Fig. 2

Mid-infrared spectra obtained by s-SNOM of an Au sample (a) and a SiC sample (b). Amplitude spectra (lower part) are shown for the input beam (in), the directly backscattered beam (s0), and its demodulated components at the nth harmonics (sn). The corresponding phase spectra (upper part) are shown in the same colours. The WLP was chosen such that the phase is nearly constant for the n = 1 phase spectrum of Au. The tapping amplitude was set to 100 nm.

Fig. 3
Fig. 3

Mid-infrared s-SNOM spectra (a) and corresponding interferograms (b) obtained with an Au (red, yellow) and a SiC sample (green, blue). Background scattering is present in the n = 1 but not in the n = 2 cases. The interferograms (offset for clarity) exhibit three distinguishable features, (A) background scattering signature congruent with input, (B) near-field response of Au, (C) near-field response of SiC. The tapping amplitude was set to 65 nm.

Fig. 4
Fig. 4

Experimental, spectrally averaged s-SNOM amplitude of SiC (squares), of SiC retracted 3 µm away from contact (dots), and of the difference (triangles) vs tapping amplitude. Connecting curves and the straight line are guides to the eye only.

Fig. 5
Fig. 5

Mid-infrared spectra obtained by s-SNOM on SiC, 100 µm (full) and 100 nm away (dotted) from a 25 nm high Au film, normalized to the input spectrum. Colour code as in Fig. 2: s0 blue, s1 green, s2 red. The amplitudes are scaled by the factors indicated. The dotted phase spectra are offset for carity. The tapping amplitude was set to 70 nm.

Metrics