Abstract

A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20nm (~ 25.62GHz), 0.22nm (~ 28.19GHz) and 0.54nm (~ 69.19GHz).

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. C. Libatique and R. K. Jain, “Precisely and rapidly wavelength-switchable narrow-linewidth 1.5μm laser source for wavelength division multiplexing applications,” IEEE Photon. Technol. Lett. 11(12), 1584–1586 (1999).
    [CrossRef]
  2. Z. Chen, S. Ma, and N. K. Dutta, “Stable dual wavelength mode-locked Erbium-doped fiber ring laser,” in Frontiers in Optics, OSA Technical Digest, paper FTuG6
  3. P.-C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded fabrycprot laser diode,” IEEE Photon. Technol. Lett. 15(5), 661–663 (2003).
    [CrossRef]
  4. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
    [CrossRef]
  5. S. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
    [CrossRef] [PubMed]
  6. Y. Yao, X. Chen, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
    [CrossRef]
  7. G. Chen, D. Huang, X. Zhang, and H. Cao, “Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber,” Opt. Lett. 33(6), 554–556 (2008).
    [CrossRef] [PubMed]
  8. S. L. Pan, X. F. Zhao, and C. Y. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
    [CrossRef] [PubMed]
  9. C. C. Lee, Y. K. Chen, and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23(5), 358–360 (1998).
    [CrossRef] [PubMed]
  10. M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE J. Sel. Top. Quantum Electron. 7(1), 55–58 (2001).
    [CrossRef]
  11. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20(8), 875–877 (1995).
    [CrossRef] [PubMed]
  12. H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
    [CrossRef]
  13. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser,” Opt. Express 16(18), 14173–14179 (2008).
    [CrossRef] [PubMed]
  14. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
    [CrossRef]
  15. J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
    [CrossRef]
  16. K. Murasawa and T. Hidaka, “Extension of dual-wavelength region in semiconductor laser with distributed Bragg Reflector,” Jpn. J. Appl. Phys. 48(1), 010208–1 (2009).
    [CrossRef]
  17. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
    [CrossRef] [PubMed]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]

2009

S. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
[CrossRef] [PubMed]

K. Murasawa and T. Hidaka, “Extension of dual-wavelength region in semiconductor laser with distributed Bragg Reflector,” Jpn. J. Appl. Phys. 48(1), 010208–1 (2009).
[CrossRef]

2008

2006

Y. Yao, X. Chen, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[CrossRef]

2005

H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
[CrossRef]

2004

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

2003

P.-C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded fabrycprot laser diode,” IEEE Photon. Technol. Lett. 15(5), 661–663 (2003).
[CrossRef]

2001

M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE J. Sel. Top. Quantum Electron. 7(1), 55–58 (2001).
[CrossRef]

1999

N. J. C. Libatique and R. K. Jain, “Precisely and rapidly wavelength-switchable narrow-linewidth 1.5μm laser source for wavelength division multiplexing applications,” IEEE Photon. Technol. Lett. 11(12), 1584–1586 (1999).
[CrossRef]

1998

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

1995

Cao, H.

Chen, G.

Chen, X.

Y. Yao, X. Chen, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

Chen, Y. K.

Cheng, X. P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Cheng, Y.

Chi, S.

P.-C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded fabrycprot laser diode,” IEEE Photon. Technol. Lett. 15(5), 661–663 (2003).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Grattan, K. T. V.

Hidaka, T.

K. Murasawa and T. Hidaka, “Extension of dual-wavelength region in semiconductor laser with distributed Bragg Reflector,” Jpn. J. Appl. Phys. 48(1), 010208–1 (2009).
[CrossRef]

Huang, D.

G. Chen, D. Huang, X. Zhang, and H. Cao, “Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber,” Opt. Lett. 33(6), 554–556 (2008).
[CrossRef] [PubMed]

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[CrossRef]

Jain, R. K.

N. J. C. Libatique and R. K. Jain, “Precisely and rapidly wavelength-switchable narrow-linewidth 1.5μm laser source for wavelength division multiplexing applications,” IEEE Photon. Technol. Lett. 11(12), 1584–1586 (1999).
[CrossRef]

Kang, J. U.

Kim, S. K.

H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
[CrossRef]

Kishi, N.

M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE J. Sel. Top. Quantum Electron. 7(1), 55–58 (2001).
[CrossRef]

Kringlebotn, J. T.

Laming, R. I.

Lee, C. C.

Lee, D.

H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
[CrossRef]

Lee, W. K.

H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
[CrossRef]

Li, Y.

Liao, C. R.

Liaw, S. K.

Libatique, N. J. C.

N. J. C. Libatique and R. K. Jain, “Precisely and rapidly wavelength-switchable narrow-linewidth 1.5μm laser source for wavelength division multiplexing applications,” IEEE Photon. Technol. Lett. 11(12), 1584–1586 (1999).
[CrossRef]

Liu, J.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Loh, W. H.

Lou, C. Y.

Matsuura, M.

M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE J. Sel. Top. Quantum Electron. 7(1), 55–58 (2001).
[CrossRef]

Moon, H. S.

H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
[CrossRef]

Murasawa, K.

K. Murasawa and T. Hidaka, “Extension of dual-wavelength region in semiconductor laser with distributed Bragg Reflector,” Jpn. J. Appl. Phys. 48(1), 010208–1 (2009).
[CrossRef]

Pan, S.

Pan, S. L.

Payne, D. N.

Peng, P.-C.

P.-C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded fabrycprot laser diode,” IEEE Photon. Technol. Lett. 15(5), 661–663 (2003).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
[CrossRef]

Shum, P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Suh, H. S.

H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
[CrossRef]

Sun, J.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[CrossRef]

Sun, T.

Tan, W. C.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Tang, M.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Tse, C. H.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Tseng, H.-Y.

P.-C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded fabrycprot laser diode,” IEEE Photon. Technol. Lett. 15(5), 661–663 (2003).
[CrossRef]

Wang, D. N.

Wu, R. F.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Xie, S.

Y. Yao, X. Chen, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

Yao, J.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yao, J. P.

S. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
[CrossRef] [PubMed]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yao, Y.

Y. Yao, X. Chen, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

Yeap, T. H.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yuan, X.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[CrossRef]

Zhang, J.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Zhang, K.

Zhang, X.

G. Chen, D. Huang, X. Zhang, and H. Cao, “Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber,” Opt. Lett. 33(6), 554–556 (2008).
[CrossRef] [PubMed]

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[CrossRef]

Zhao, X. F.

Zhou, J. L.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE J. Sel. Top. Quantum Electron. 7(1), 55–58 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter,” IEEE Photon. Technol. Lett. 17(9), 1824–1826 (2005).
[CrossRef]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “R, F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

N. J. C. Libatique and R. K. Jain, “Precisely and rapidly wavelength-switchable narrow-linewidth 1.5μm laser source for wavelength division multiplexing applications,” IEEE Photon. Technol. Lett. 11(12), 1584–1586 (1999).
[CrossRef]

P.-C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded fabrycprot laser diode,” IEEE Photon. Technol. Lett. 15(5), 661–663 (2003).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Y. Yao, X. Chen, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

K. Murasawa and T. Hidaka, “Extension of dual-wavelength region in semiconductor laser with distributed Bragg Reflector,” Jpn. J. Appl. Phys. 48(1), 010208–1 (2009).
[CrossRef]

Opt. Commun.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Z. Chen, S. Ma, and N. K. Dutta, “Stable dual wavelength mode-locked Erbium-doped fiber ring laser,” in Frontiers in Optics, OSA Technical Digest, paper FTuG6

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig 1.
Fig 1.

Schematic diagram of the proposed tunable and switchable dual-wavelength Erbium-doped fiber laser with a simple linear cavity

Fig. 2
Fig. 2

Reflectivity spectrum of the narrow-band FBG

Fig. 3
Fig. 3

Scheme of the fiber Bragg grating based Fabry-Perot filter

Fig. 4
Fig. 4

Transmission spectrum of the FBG F-P filter, two FBG length of 3mm; the interval between two FBG of 1.7mm (a) measured spectrum (OSA resolution: 0.01nm); (b) calculated spectrum by transfer matrix method

Fig. 5
Fig. 5

Operation principle about the fiber laser with the tunable and switchable dual-wavelength emitting with pump power of 166mW; (a) dual-wavelength emitting at 1569.61 and 1569.81nm; (b) single wavelength emitting at 1569.60nm; (c) dual-wavelength emitting at 1569.38 and 1569.60nm; (d) single wavelength emitting at 1569.38nm; (e) dual-wavelength emitting at 1568.84 and 1569.38nm

Fig. 6
Fig. 6

Electrical spectrum of the beating signal observed at the output of the photodetector (a) SLM operation (b) mode competition and hopping

Fig. 7
Fig. 7

(a). Measured output spectrum at fixed wavelengths of 1569.38 and 1569.60nm every 1 minutes for 10 minutes, pump power of 166mW; (b). Fluctuation of output power and wavelength during 10 minutes

Fig. 8
Fig. 8

Wavelength switching of the fiber laser by adjusting the PC, with low pump power of 133mW

Fig. 9
Fig. 9

Dual-wavelength emission of the fiber laser by adjusting the PC, with high pump power of 166mW

Fig. 10
Fig. 10

Measured output spectrum at fixed wavelengths of 1569.38 and 1569.60nm with changing the pump power from 133mW to 188.4mW; Inset: red line corresponds to the wavelength of 1569.38 nm and blue line corresponds to the wavelength of 1569.60 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F 1 = [ cosh ( γ L g 1 ( 2 ) ) j σ γ sinh ( γ L g 1 ( 2 ) ) j κ γ sinh ( γ L g 1 ( 2 ) ) j κ γ sinh ( γ L g 1 ( 2 ) ) cosh ( γ L g ) + j σ γ sinh ( γ L g 1 ( 2 ) ) ]
F 2 = [ e j β L 0 0 e j β L ]
T = 2 j κ γ sinh ( γ L g ) [ cosh ( γ L g ) cos ( β L ) - σ γ sinh ( γ L g ) sin ( β L ) ] [ cosh ( γ L g ) - j σ γ sinh ( γ L g ) ] 2 e - j β L + κ 2 γ 2 sinh 2 ( γ L g ) e j β L
F S R = c 2 n e f f L + c ( τ 1 ( λ ) + τ 2 ( λ ) )
τ 1 ( 2 ) ( λ ) = λ 2 2 π c d φ d λ

Metrics