Abstract

The strong radial confinement and the pronounced evanescent field of the guided light in optical nanofibers yield favorable conditions for ultra-sensitive surface spectroscopy of molecules deposited on the fiber. Using the guided mode of the nanofiber for both excitation and fluorescence collection, we present spectroscopic measurements on 3,4,9,10-perylene-tetracarboxylic dianhydride molecules (PTCDA) at ambient conditions. Surface coverages as small as 1 ‰ of a compact monolayer still give rise to fluorescence spectra with a good signal to noise ratio. Moreover, we analyze and quantify the self-absorption effects due to reabsorption of the emitted fluorescence light by circumjacent surface-adsorbed molecules distributed along the fiber waist.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bordo and H.-G. Rubahn, Optics and spectroscopy at surfaces and interfaces (Wiley-VCH, Weinheim 2006).
  2. Ph. H. Paul and G. Kychakoff, "Fiber-optic evanescent field absorption sensor," Appl. Phys. Lett. 51, 12-14 (1987).
    [CrossRef]
  3. A. Messica, A. Greenstein, and A. Katzir, "Theory of fiber-optic, evanescent-wave spectroscopy and sensors," Appl. Opt. 35, 2274-2284 (1996).
    [CrossRef] [PubMed]
  4. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development," Fresen. J. Anal. Chem. 362, 349-373 (1998).
    [CrossRef]
  5. S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988).
    [CrossRef]
  6. Xh. Fang and W. Tan, "Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation," Anal. Chem. 71, 3101-3105 (1999).
    [CrossRef] [PubMed]
  7. F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004).
    [CrossRef]
  8. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
    [CrossRef] [PubMed]
  9. V. Grubsky and A. Savchenko "Glass micro-fibers for efficient third harmonic generation," Opt. Express 13, 6798-6806 (2005).
    [CrossRef] [PubMed]
  10. F. Le Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
    [CrossRef]
  11. G. Sagu’e, E. Vetsch,W. Alt, D. Meschede, and A. Rauschenbeutel, "Cold-Atom Physics Using Ultrathin Optical Fibres: Light-Induced Dipole Forces and Surface Interactions," Phys. Rev. Lett. 99, 163602 (2007).
    [CrossRef] [PubMed]
  12. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 11952-11958 (2007).
    [CrossRef] [PubMed]
  13. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007).
    [CrossRef] [PubMed]
  14. T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  15. F. Warken, A. Rauschenbeutel, and T. Bartholomäus, "Fiber pulling profits from precise positioning," Photon. Spectra 42(3), 73 (2008).
  16. U. Gómez, M. Leonhardt, H. Port, and H. C. Wolf, "Optical properties of amorphous ultrathin films of perylene derivatives," Chem. Phys. Lett. 268, 1-6 (1997).
    [CrossRef]
  17. S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997).
    [CrossRef]
  18. H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004).
    [CrossRef] [PubMed]
  19. T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999).
    [CrossRef]
  20. F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005).
    [CrossRef]
  21. S. R. Forrest and Y. Zhang, "Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin-films. I. Theory," Phys. Rev. B 49, 11297-11308 (1994).
    [CrossRef]
  22. W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
    [CrossRef]
  23. The absorption cross section of PTCDA was calculated from the molar extinction coefficient ∑ of PTCDA in solution [M. Hoffmann, "Frenkel and Charge-Transfer Excitons in Quasi-One-Dimensional Molecular Crystals with Strong Intermolecular Orbital Overlap," Dissertation (Institute of Applied Photophysics, Technical University of Dresden, Dresden, Germany), p. 12 (2000)] according to ⌠ = 3/2×2.303/NA ×∑. The factor 3/2 accounts for the different dimensionality on the fiber surface compared to solution. We note that the exact value of ⌠ may differ from the one calculated by a factor of the order of one due to differences in the refractive indices.
  24. V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996).
    [CrossRef]
  25. K. Puech, H. Fröb, M. Hoffmann, and K. Leo, "Luminescence of ultrathin organic films: transition from monomer to excimer emission," Opt. Lett. 21, 1606-1608 (1996).
    [CrossRef] [PubMed]
  26. X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
    [CrossRef] [PubMed]
  27. M. D. Marazuela and M. C. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
    [CrossRef] [PubMed]
  28. M. Sumetsky, "Optical Micro/Nanofibers for Sensing Applications," in X. Fan, ed., Advanced Photonic Structures for Biological and Chemical Detection, (Springer, New York 2009), pp. 337-376.
  29. G. J. Pendock, H. S. MacKenzie, and F. P. Payne "Dye lasers using tapered optical fibers," Appl. Opt. 32, 5236-5242 (1993).
    [CrossRef] [PubMed]

2008 (1)

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

2007 (3)

2005 (3)

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005).
[CrossRef]

J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
[CrossRef] [PubMed]

V. Grubsky and A. Savchenko "Glass micro-fibers for efficient third harmonic generation," Opt. Express 13, 6798-6806 (2005).
[CrossRef] [PubMed]

2004 (3)

H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004).
[CrossRef] [PubMed]

F. Le Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004).
[CrossRef]

2003 (1)

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
[CrossRef]

2002 (1)

M. D. Marazuela and M. C. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

1999 (2)

T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999).
[CrossRef]

Xh. Fang and W. Tan, "Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation," Anal. Chem. 71, 3101-3105 (1999).
[CrossRef] [PubMed]

1998 (1)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development," Fresen. J. Anal. Chem. 362, 349-373 (1998).
[CrossRef]

1997 (2)

U. Gómez, M. Leonhardt, H. Port, and H. C. Wolf, "Optical properties of amorphous ultrathin films of perylene derivatives," Chem. Phys. Lett. 268, 1-6 (1997).
[CrossRef]

S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997).
[CrossRef]

1996 (3)

V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996).
[CrossRef]

K. Puech, H. Fröb, M. Hoffmann, and K. Leo, "Luminescence of ultrathin organic films: transition from monomer to excimer emission," Opt. Lett. 21, 1606-1608 (1996).
[CrossRef] [PubMed]

A. Messica, A. Greenstein, and A. Katzir, "Theory of fiber-optic, evanescent-wave spectroscopy and sensors," Appl. Opt. 35, 2274-2284 (1996).
[CrossRef] [PubMed]

1994 (1)

S. R. Forrest and Y. Zhang, "Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin-films. I. Theory," Phys. Rev. B 49, 11297-11308 (1994).
[CrossRef]

1993 (1)

1992 (1)

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

1988 (1)

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988).
[CrossRef]

1987 (1)

Ph. H. Paul and G. Kychakoff, "Fiber-optic evanescent field absorption sensor," Appl. Phys. Lett. 51, 12-14 (1987).
[CrossRef]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007).
[CrossRef] [PubMed]

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004).
[CrossRef]

F. Le Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Birks, T. A.

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Bulovic, V.

V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996).
[CrossRef]

Burrows, P. E.

V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996).
[CrossRef]

Cronin, J. A.

V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996).
[CrossRef]

Dienel, Th.

H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004).
[CrossRef] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Fang, Xh.

Xh. Fang and W. Tan, "Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation," Anal. Chem. 71, 3101-3105 (1999).
[CrossRef] [PubMed]

Forrest, S. R.

S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997).
[CrossRef]

V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996).
[CrossRef]

S. R. Forrest and Y. Zhang, "Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin-films. I. Theory," Phys. Rev. B 49, 11297-11308 (1994).
[CrossRef]

Fritz, T.

H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004).
[CrossRef] [PubMed]

Fröb, H.

Fromm, D. P.

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
[CrossRef]

Gómez, U.

U. Gómez, M. Leonhardt, H. Port, and H. C. Wolf, "Optical properties of amorphous ultrathin films of perylene derivatives," Chem. Phys. Lett. 268, 1-6 (1997).
[CrossRef]

Greenstein, A.

Grubsky, V.

Gupta, S. D.

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Hakuta, K.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007).
[CrossRef] [PubMed]

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. Le Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004).
[CrossRef]

Hieftje, G. M.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development," Fresen. J. Anal. Chem. 362, 349-373 (1998).
[CrossRef]

Hobbs, S. E.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development," Fresen. J. Anal. Chem. 362, 349-373 (1998).
[CrossRef]

Hoffmann, M.

Isoda, S.

T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999).
[CrossRef]

Karl, N.

T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999).
[CrossRef]

Katzir, A.

A. Messica, A. Greenstein, and A. Katzir, "Theory of fiber-optic, evanescent-wave spectroscopy and sensors," Appl. Opt. 35, 2274-2284 (1996).
[CrossRef] [PubMed]

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988).
[CrossRef]

Kobayashi, T.

T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999).
[CrossRef]

Kosower, E. M.

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988).
[CrossRef]

Kuwamoto, K.

T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999).
[CrossRef]

Kychakoff, G.

Ph. H. Paul and G. Kychakoff, "Fiber-optic evanescent field absorption sensor," Appl. Phys. Lett. 51, 12-14 (1987).
[CrossRef]

Le Kien, F.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007).
[CrossRef] [PubMed]

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. Le Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004).
[CrossRef]

Leo, K.

Leonhardt, M.

U. Gómez, M. Leonhardt, H. Port, and H. C. Wolf, "Optical properties of amorphous ultrathin films of perylene derivatives," Chem. Phys. Lett. 268, 1-6 (1997).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Liang, J. Q.

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004).
[CrossRef]

Lou, J.

MacKenzie, H. S.

Marazuela, M. D.

M. D. Marazuela and M. C. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

Melentiev, P. N.

Meschede, D.

Messica, A.

Moerner, W. E.

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
[CrossRef]

Moreno-Bondi, M. C.

M. D. Marazuela and M. C. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

Morinaga, M.

Nayak, K. P.

Nitsche, R.

H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004).
[CrossRef] [PubMed]

Ogawa, T.

T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999).
[CrossRef]

Paul, Ph. H.

Ph. H. Paul and G. Kychakoff, "Fiber-optic evanescent field absorption sensor," Appl. Phys. Lett. 51, 12-14 (1987).
[CrossRef]

Payne, F. P.

Pendock, G. J.

Port, H.

U. Gómez, M. Leonhardt, H. Port, and H. C. Wolf, "Optical properties of amorphous ultrathin films of perylene derivatives," Chem. Phys. Lett. 268, 1-6 (1997).
[CrossRef]

Potyrailo, R. A.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development," Fresen. J. Anal. Chem. 362, 349-373 (1998).
[CrossRef]

Proehl, H.

H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004).
[CrossRef] [PubMed]

Puech, K.

Rauschenbeutel, A.

Savchenko, A.

Schnitzer, I.

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988).
[CrossRef]

Shopoua, S. I.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Simhony, S.

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988).
[CrossRef]

Sokolowski, M.

Sun, Y.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Tan, W.

Xh. Fang and W. Tan, "Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation," Anal. Chem. 71, 3101-3105 (1999).
[CrossRef] [PubMed]

Thompson, M. E.

V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996).
[CrossRef]

Tong, L.

Vetsch, E.

Warken, F.

White, I. M.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Wolf, H. C.

U. Gómez, M. Leonhardt, H. Port, and H. C. Wolf, "Optical properties of amorphous ultrathin films of perylene derivatives," Chem. Phys. Lett. 268, 1-6 (1997).
[CrossRef]

Ye, Z.

Zhang, Y.

S. R. Forrest and Y. Zhang, "Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin-films. I. Theory," Phys. Rev. B 49, 11297-11308 (1994).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Acta Crystallogr. B (1)

T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999).
[CrossRef]

Anal. Bioanal. Chem. (1)

M. D. Marazuela and M. C. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

Anal. Chem. (1)

Xh. Fang and W. Tan, "Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation," Anal. Chem. 71, 3101-3105 (1999).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Ph. H. Paul and G. Kychakoff, "Fiber-optic evanescent field absorption sensor," Appl. Phys. Lett. 51, 12-14 (1987).
[CrossRef]

Chem. Phys. (1)

V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996).
[CrossRef]

Chem. Phys. Lett. (1)

U. Gómez, M. Leonhardt, H. Port, and H. C. Wolf, "Optical properties of amorphous ultrathin films of perylene derivatives," Chem. Phys. Lett. 268, 1-6 (1997).
[CrossRef]

Chem. Rev. (1)

S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997).
[CrossRef]

Fresen. J. Anal. Chem. (1)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development," Fresen. J. Anal. Chem. 362, 349-373 (1998).
[CrossRef]

J. Appl. Phys. (1)

S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988).
[CrossRef]

J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Opt. Commun. (1)

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (2)

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. Le Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Phys. Rev. B (1)

S. R. Forrest and Y. Zhang, "Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin-films. I. Theory," Phys. Rev. B 49, 11297-11308 (1994).
[CrossRef]

Phys. Rev. Lett. (2)

G. Sagu’e, E. Vetsch,W. Alt, D. Meschede, and A. Rauschenbeutel, "Cold-Atom Physics Using Ultrathin Optical Fibres: Light-Induced Dipole Forces and Surface Interactions," Phys. Rev. Lett. 99, 163602 (2007).
[CrossRef] [PubMed]

H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003).
[CrossRef]

Other (4)

The absorption cross section of PTCDA was calculated from the molar extinction coefficient ∑ of PTCDA in solution [M. Hoffmann, "Frenkel and Charge-Transfer Excitons in Quasi-One-Dimensional Molecular Crystals with Strong Intermolecular Orbital Overlap," Dissertation (Institute of Applied Photophysics, Technical University of Dresden, Dresden, Germany), p. 12 (2000)] according to ⌠ = 3/2×2.303/NA ×∑. The factor 3/2 accounts for the different dimensionality on the fiber surface compared to solution. We note that the exact value of ⌠ may differ from the one calculated by a factor of the order of one due to differences in the refractive indices.

F. Warken, A. Rauschenbeutel, and T. Bartholomäus, "Fiber pulling profits from precise positioning," Photon. Spectra 42(3), 73 (2008).

V. Bordo and H.-G. Rubahn, Optics and spectroscopy at surfaces and interfaces (Wiley-VCH, Weinheim 2006).

M. Sumetsky, "Optical Micro/Nanofibers for Sensing Applications," in X. Fan, ed., Advanced Photonic Structures for Biological and Chemical Detection, (Springer, New York 2009), pp. 337-376.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme of the experimental setup. Molecules are deposited on the 320 nm diameter nanofiber waist of a tapered fiber from a heated crucible. Controlled by alternating shutters, either absorption is probed via transmission of white light from a tungsten lamp or fluorescence is excited by laser radiation. Both signals are detected by a CCD spectrograph.

Fig. 2.
Fig. 2.

Absorption (right) and corresponding fluorescence (left) spectra of surface-adsorbed PTCDA molecules during deposition. Five representative spectra within a range of surface coverages between 0.10 and 1.28% ML are shown.

Fig. 3.
Fig. 3.

Influence of self-absorption and reemission on the measured fluorescence signal for 0.75% and 0.20% ML. For 0.75%ML, the signal corrected for reabsorption (magenta) differs significantly from the measured spectrum (blue). For 0.10%ML (red and black, respectively), the difference is only marginal. The correction for reemission does not have a significant influence on the spectral shape, as can be seen in the cyan/green curves. The absorbance for both surface coverages is shown for comparison of the spectral shape.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η ( λ exc ) n σ ( λ exc ) ln ( 10 ) A eff ( λ exc ) = θ σ ( λ exc ) ln ( 10 ) · 2 π RL A eff ( λ exc ) ,
A eff ( λ exc ) = P ref ( λ exc ) I surf ( λ exc ) .
P abs ( λ exc , z ) = σ ( λ exc ) A eff ( λ exc ) P sig ( λ exc , z ) = σ ( λ exc ) A eff ( λ exc ) P ref ( λ exc ) 10 η ( λ exc ) z L .
P fl ( λ , z ) = C ( λ ) · P abs ( λ exc , z ) ,
P out 0 ( λ ) = 0 n P fl ( λ , z ) 10 η ( λ ) z L d n = 0 L 2 π R θ P fl ( λ , z ) 10 η ( λ ) z L d z
= C ( λ ) η ( λ exc ) η ( λ ) + η ( λ exc ) ( 1 10 ( η ( λ ) + η ( λ exc ) ) ) P ref ( λ ) .
P out 0 ( λ ) C ( λ ) · η ( λ exc ) · ln ( 10 ) · P ref ( λ exc ) .
P out tot ( λ ) P out 0 ( λ ) + P out 1 ( λ ) .
P reabs ( z , z ̄ ) = 0 σ ( λ ̄ ) A eff ( λ ) P fl ( λ ̄ , z ) 10 η ( λ ̄ ) z z ̄ L d λ ̄ .
P reem ( λ , z , z ̄ ) = C ( λ ) · P reabs ( z , z ̄ ) .
P out 1 ( λ ) = 0 L 0 L ( 2 π ) 2 C ( λ ) P reabs ( z , z ̄ ) 10 η ( λ ) z ̄ L d z ̄ d z .

Metrics