Abstract

Multiple optical traps allow one to manipulate multiple particles simultaneously, to characterize interactions in colloidal systems, and to assemble particles into complex structures. Most of the current multiple optical traps are realized with microscope objective-based optical tweezers, which are bulky in size. In this article, we created multiple optical traps with an inclined dual-fiber optical tweezers setup. One 3D trap and two 2D traps were formed at different vertical levels with adjustable separations and positions. We demonstrated that this fiber-based trapping system can be used as a simple block to perform multiple functions, such as particle grouping, separation, and stacking. Moreover, we found that multiple beads can be trapped and stacked up in three dimensions. Compared with those formed with objective-based optical tweezers, the multiple traps presented here are small in size and independent of the objective or the substrate, and hence hold the promise to be integrated in microfluidic systems. This fiber-based multiple traps can be used for on-chip parallel manipulation, particle separation, and characterization of interactions of colloidal and biological systems.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
    [CrossRef]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  3. J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett. 84(21), 4289 (2004).
    [CrossRef]
  4. J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
    [CrossRef] [PubMed]
  5. Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13(14), 5434–5439 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5434 .
    [CrossRef] [PubMed]
  6. K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
    [CrossRef] [PubMed]
  7. G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
    [CrossRef] [PubMed]
  8. W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
    [CrossRef]
  9. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26(12), 863–865 (2001).
    [CrossRef] [PubMed]
  10. K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, “Multiple optical line traps using a single phase-only rectangular ridge,” Appl. Phys. B 80(8), 973–976 (2005).
    [CrossRef]
  11. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
    [CrossRef]
  12. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
    [CrossRef]
  13. H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
    [CrossRef] [PubMed]
  14. F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6075 .
    [CrossRef] [PubMed]
  15. Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
    [CrossRef] [PubMed]
  16. D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
    [CrossRef]
  17. K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
    [CrossRef]
  18. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
    [CrossRef] [PubMed]
  19. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20(7), 1568 (2003).
    [CrossRef]
  20. K. Taguchi, K. Atsuta, T. Nakata, and M. Ideda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176(1-3), 43–47 (2000).
    [CrossRef]
  21. Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17(16), 13624–13638 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13624 .
    [CrossRef] [PubMed]
  22. R. C. Gauthier, “Optical trapping: a tool to assist optical machining,” Opt. Laser Technol. 29(7), 389–399 (1997).
    [CrossRef]
  23. W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
    [CrossRef]
  24. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735 (1994).
    [CrossRef] [PubMed]
  25. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
    [CrossRef] [PubMed]

2009 (1)

2008 (3)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
[CrossRef] [PubMed]

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[CrossRef]

2007 (3)

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6075 .
[CrossRef] [PubMed]

2006 (1)

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[CrossRef] [PubMed]

2005 (2)

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, “Multiple optical line traps using a single phase-only rectangular ridge,” Appl. Phys. B 80(8), 973–976 (2005).
[CrossRef]

Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13(14), 5434–5439 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5434 .
[CrossRef] [PubMed]

2004 (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett. 84(21), 4289 (2004).
[CrossRef]

2003 (1)

2002 (2)

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

2001 (3)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26(12), 863–865 (2001).
[CrossRef] [PubMed]

2000 (2)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

K. Taguchi, K. Atsuta, T. Nakata, and M. Ideda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176(1-3), 43–47 (2000).
[CrossRef]

1998 (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
[CrossRef]

1997 (1)

R. C. Gauthier, “Optical trapping: a tool to assist optical machining,” Opt. Laser Technol. 29(7), 389–399 (1997).
[CrossRef]

1994 (2)

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735 (1994).
[CrossRef] [PubMed]

1993 (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

Atsuta, K.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ideda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176(1-3), 43–47 (2000).
[CrossRef]

Bernet, S.

Berns, M. W.

Biran, I.

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett. 84(21), 4289 (2004).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Boer, G.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Bryant, P. E.

Bull, C. W.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Carruthers, A. E.

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

Cheong, W. C.

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, “Multiple optical line traps using a single phase-only rectangular ridge,” Appl. Phys. B 80(8), 973–976 (2005).
[CrossRef]

Cižmár, T.

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

Craighead, H.

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[CrossRef] [PubMed]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Davitt, K. M.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Degiorgio, V.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[CrossRef]

Delacrétaz, G.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

Dholakia, K.

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26(12), 863–865 (2001).
[CrossRef] [PubMed]

Donoghue, J. P.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
[CrossRef]

Fournier, J. M.

Frick, M.

Gauthier, R. C.

R. C. Gauthier, “Optical trapping: a tool to assist optical machining,” Opt. Laser Technol. 29(7), 389–399 (1997).
[CrossRef]

Gherardi, D. M.

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

Grange, W.

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

Grier, D. G.

Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13(14), 5434–5439 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5434 .
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
[CrossRef]

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
[CrossRef] [PubMed]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Guntherodt, H.

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

Hegner, M.

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

Husale, S.

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

Ideda, M.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ideda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176(1-3), 43–47 (2000).
[CrossRef]

Johann, R.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Krol, J. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Lee, W. M.

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, “Multiple optical line traps using a single phase-only rectangular ridge,” Appl. Phys. B 80(8), 973–976 (2005).
[CrossRef]

Liberale, C.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[CrossRef]

Liu, Y.

MacDonald, M. P.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Merenda, F.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6075 .
[CrossRef] [PubMed]

Moh, K. J.

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, “Multiple optical line traps using a single phase-only rectangular ridge,” Appl. Phys. B 80(8), 973–976 (2005).
[CrossRef]

Mohanty, K. S.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
[CrossRef] [PubMed]

Mohanty, S. K.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
[CrossRef] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Nakata, T.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ideda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176(1-3), 43–47 (2000).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Nurmikko, A. V.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Paterson, L.

Patterson, W. R.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Renaud, Ph.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

Ritsch-Marte, M.

Rohner, J.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6075 .
[CrossRef] [PubMed]

Roichman, Y.

Salathé, R. P.

Salathé, R.-P.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

Serruya, M. D.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Sibbett, W.

Singer, W.

Sonek, G. J.

Song, Y. K.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Stein, J.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Taguchi, K.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ideda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176(1-3), 43–47 (2000).
[CrossRef]

Tam, J. M.

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett. 84(21), 4289 (2004).
[CrossRef]

Visscher, K.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Walt, D. R.

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett. 84(21), 4289 (2004).
[CrossRef]

Wright, E. M.

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

Wright, W. H.

Yu, M.

Yuan, X.-C.

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, “Multiple optical line traps using a single phase-only rectangular ridge,” Appl. Phys. B 80(8), 973–976 (2005).
[CrossRef]

Zhang, J.

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, “Multiple optical line traps using a single phase-only rectangular ridge,” Appl. Phys. B 80(8), 973–976 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett. 84(21), 4289 (2004).
[CrossRef]

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[CrossRef]

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Cytometry (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

J. Neural Eng. (1)

Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (1)

H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

K. Taguchi, K. Atsuta, T. Nakata, and M. Ideda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176(1-3), 43–47 (2000).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

R. C. Gauthier, “Optical trapping: a tool to assist optical machining,” Opt. Laser Technol. 29(7), 389–399 (1997).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (6)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007).
[CrossRef] [PubMed]

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the inclined DFOTs system.

Fig. 2
Fig. 2

Principle of multiple traps created by using the inclined DFOTs.

Fig. 3
Fig. 3

Images of beads manipulated using the multiple traps. (a) Three free beads were lying on the coverglass. (b) Beads 1, 2, and 3 were trapped in contact. (b)-(d) The fiber block was moved upward along + z and trapped beads were separated. (d)-(f) The coverglass was moved along + x and then along -y. The arrows in (d) and (e) indicate the next movement direction of the coverglass. The xy coordinate system is shown at the lower left corner of (a). The bead size is 4.74 μm in diameter.

Fig. 4
Fig. 4

Experimental demonstration of particle stacking. With the fiber block lowered down toward the coverglass, the four beads were (a) first separated, (b) then brought into contact, and (c) finally stacked. (a)-(c): pictures captured from a video clip; (d)-(f): sketches illustrating pictures (a)-(c), respectively. The bead size is 4.74 μm in diameter.

Fig. 5
Fig. 5

Experimental demonstration of particle grouping. (a) Six free beads were initially lying on the substrate. (b) Beads 1 to 5 were trapped and separated into three groups. Bead 6 was free and served as the reference of the coverglass movement. (c) The coverglass was move along -y. (d) The laser was switched off and all beads return to the coverglass. (e) After the laser was turned on, Beads 1 to 5 were separated into three new groups, while Bead 6 remained free. (f) The coverglass was moved along –x. The bead size is 4.74 μm in diameter.

Fig. 6
Fig. 6

Experimental demonstration of multiple particles trapped in three dimensions. (a) Six free beads were lying on the coverglass. (b) Beads 1, 2, and 3 were trapped by the 3D trap, and Bead 4 and 5 were trapped by the 2D traps. Bead 6 was free and served as the reference of the coverglass movement. (c) The coverglass is moved along + x, with the trapped beads staying stable. (d)–(e) The objective lens was moved along + z direction. Bead 2 was first brought into focus before Beads 1 and 3 (see the media). Beads 1 and 3 were in focus in (e). (f) The sketch illustrating the images (d) and (e).

Fig. 7
Fig. 7

(a) The yz plane force field of Fn (the net force of the optical force, gravity, and buoyancy, excluding the normal forces between the beads and between the beads and the coverglass); (b) free body diagrams of three beads (Beads 1, 2, and 3) at three different vertical levels shown in (a): Level A, B, and C. Fni stands for Fn of Bead i. Nsi and Nij stand for the normal forces between the substrate (the coverglass) and Bead i and between Beads i and j, respectively.

Fig. 8
Fig. 8

The yz plane force field of Fn (the net force of the optical force, gravity, and buoyancy, excluding the normal forces between the beads). Beads 1, 2, and 3 are trapped in three dimensions.

Metrics