Abstract

A highly nonlinear composite fiber, which has a 1.5 μm chalcogenide glass core surrounded by a tellurite glass microstructure cladding, has been fabricated by the method of stack and draw. A tellurite glass capillary containing a As2S3 rod was sealed with negative pressure inside. Then this capillary and other empty capillaries were stacked into a tellurite glass tube, and elongated into a cane. This cane was then inserted into another tellurite glass jacket tube and drawn into the composite microstructure fiber. The fiber has a flattened chromatic dispersion together with a zero dispersion wavelength located in the near infrared range. The propagation losses at 1.55 μm were 18.3 dB/m. The nonlinear coefficient at 1.55 μm was 9.3 m−1W−1. Such a high nonlinear coefficient counteracts the high propagation losses to a large extent. A supercontinuum spectrum of 20-dB bandwidth covering 800-2400 nm was generated by this composite microstructure fiber.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008).
    [CrossRef] [PubMed]
  2. V. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
    [PubMed]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  4. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11(26), 3568–3573 (2003).
    [CrossRef] [PubMed]
  5. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
    [CrossRef] [PubMed]
  6. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
    [CrossRef] [PubMed]
  7. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
    [CrossRef] [PubMed]
  8. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
    [CrossRef] [PubMed]
  9. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
    [CrossRef] [PubMed]
  10. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Supercontinuum generation in an As2Se3-based chalcogenide PCF using four-wave mixing and soliton self-frequency Shift,” OFC San Diego, 22–27 March 2009, OWU6 (2009).
  11. D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  12. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
    [CrossRef] [PubMed]
  13. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-Band,” OFC San Diego, 22–26 March 2009, OTuC4 (2009).
  14. L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
    [CrossRef]
  15. W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, and T. M. Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453 (2008).
    [CrossRef]
  16. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, OFC Los Angeles, 22–27 February 2004, PDP26 (2004).
  17. A. Mori, K. Shikano, W. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, ECOC Stockholm, 5–9 September 2004, Th3.3.6 (2004).
  18. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15(3), 440–442 (2003).
    [CrossRef]
  19. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
    [CrossRef]
  20. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
    [CrossRef]
  21. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
    [CrossRef] [PubMed]
  22. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  23. V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core silica holey fibers: nonlinearity and confinement loss trade-offs,” J. Opt. Soc. Am. B 20(7), 1427–1436 (2003).
    [CrossRef]

2009 (2)

2008 (6)

2007 (1)

2006 (1)

2005 (1)

2004 (2)

2003 (3)

2002 (2)

V. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
[PubMed]

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

2000 (1)

Adam, J. L.

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

Afshar, V. S.

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, and T. M. Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453 (2008).
[CrossRef]

Andersen, T. V.

Asimakis, S.

Belardi, W.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15(3), 440–442 (2003).
[CrossRef]

Birks, T. A.

Brilland, L.

Chartier, T.

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Chaudhari, C.

Choi, D. Y.

Coen, S.

Cordeiro, C. M. B.

Coulombier, Q.

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

Désévédavy, F.

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

Dudley, J. M.

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Finazzi, V.

Frampton, K.

Fu, L.

Furusawa, K.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15(3), 440–442 (2003).
[CrossRef]

Genty, G.

George, A. K.

Hansen, K.

Hilligsøe, K. M.

Houizot, P.

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

Keiding, S.

Kikuchi, K.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

Kivshar, Y. S.

Knight, J. C.

Koizumi, F.

Kristiansen, R.

Kumar, V. V.

Lamont, M. R.

Lamont, M. R. E.

Larsen, J.

Lee, J. H.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15(3), 440–442 (2003).
[CrossRef]

Liao, M.

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Mølmer, K.

Monro, T. M.

Monteville, A.

Moore, R. C.

Nguyen, T. N.

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Nielsen, C. K.

Ohishi, Y.

Omenetto, F.

Paulsen, H. N.

Petropoulos, P.

Qin, G.

Ranka, J. K.

Reeves, W. H.

Renversez, G.

Richardson, D. J.

Roelens, M. A.

Russell, P.

Russell, P. St. J.

Smektala, F.

Stentz, A. J.

Sugimoto, N.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

Suzuki, T.

Taira, K.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

Taylor, A.

Traynor, N.

Troles, J.

Wadsworth, W. J.

Windeler, R. S.

Yan, X.

Yeom, D. I.

Yusoff, Z.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15(3), 440–442 (2003).
[CrossRef]

Zhang, W. Q.

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, and T. M. Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453 (2008).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, and T. M. Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453 (2008).
[CrossRef]

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15(3), 440–442 (2003).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (9)

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008).
[CrossRef] [PubMed]

V. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
[PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (4)

C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-Band,” OFC San Diego, 22–26 March 2009, OTuC4 (2009).

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, OFC Los Angeles, 22–27 February 2004, PDP26 (2004).

A. Mori, K. Shikano, W. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, ECOC Stockholm, 5–9 September 2004, Th3.3.6 (2004).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Supercontinuum generation in an As2Se3-based chalcogenide PCF using four-wave mixing and soliton self-frequency Shift,” OFC San Diego, 22–27 March 2009, OWU6 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram for the fabrication of the cane: a. As2S3 glass rod with larger diameter, b. elongated As2S3 glass rods, c. tellurite capillary to hold the As2S3 glass rod, d. tellurite capillaries for the holes in the cladding of the fiber, e. tellurite capillary with As2S3 glass rod inside, f. tellurite tube to be stacked with capillaries, g. cane, h. enlarged cross section of the cane.

Fig. 2
Fig. 2

Scanning electron microscope image of the cross section of the As2S3-tellurite composite microstructure fiber.

Fig. 3
Fig. 3

Calculated confinement loss of the fundamental mode for the As2S3-tellurite composite microstructure fiber.

Fig. 4
Fig. 4

Chromatic dispersion of the fundamental mode in the As2S3-tellurite composite microstructure fiber and the calculated mode field (inset a) of the fundamental mode at 1550 nm. The chromatic dispersion of the fundamental mode in a step-index air-clad As2S3 glass fiber with the core diameter of 1.5 μm is shown for comparison.

Fig. 5
Fig. 5

Supercontinuum spectrum from the As2S3-tellurite composite microstructure fiber pumped by a 1.85 μm femtosecond laser.

Tables (1)

Tables Icon

Table 1 Nonlinear coefficient γ, maximum effective fiber length Leff-max, figure of merit γ×L eff-max, effective fiber length of 1 cm fiber Leff-1cm, and figure of merit γ×Leff-1cm for various highly nonlinear fibers (HF).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ = 2 π λ n 2 ( x , y ) | F ( x , y ) | 4 d x d y ( | F ( x , y ) | 2 d x d y ) 2 ,

Metrics