Abstract

An antireflecting micro-structured interface, working in the resonance domain, and made from a bi-periodic array of semi-spherical hollowing-out in a silicon substrate is presented. Its parameters such as sphere radius and position of sphere centers from the surface are optimized numerically. A simple and robust process is described allowing such kind of antireflective surfaces to be fabricated for the infrared range. Spectral and angular reflectance measurement demonstrates the efficiency of the antireflective micro-structured interface which can easily be adapted for the visible range and for photovoltaic applications by a simple homothetic modification of the micro-structure typical dimensions.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
    [CrossRef]
  2. H. A. Macleod, Thin film optical filters (Institute of Physics Publishing, London, 1986).
  3. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
    [CrossRef] [PubMed]
  4. P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” Principle,” Nature 244(5414), 281–282 (1973).
    [CrossRef]
  5. Y. Zhao, J. Wang, and G. Mao, “Colloidal subwavelength nanostructures for antireflection optical coatings,” Opt. Lett. 29, 993–1009 (1982).
  6. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).
  7. H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
    [CrossRef] [PubMed]
  8. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
    [CrossRef]
  9. Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
    [CrossRef]
  10. M. Born, and E. Wolf, Principles of Optics (Pergamon, London, 1980), 705 – 708.
  11. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995).
    [CrossRef]
  12. R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16(23), 19304–19309 (2008).
    [CrossRef] [PubMed]
  13. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
    [CrossRef]
  14. K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
    [CrossRef]

2008

2007

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
[CrossRef]

2004

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

2003

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

2002

1999

K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[CrossRef]

1995

1982

Y. Zhao, J. Wang, and G. Mao, “Colloidal subwavelength nanostructures for antireflection optical coatings,” Opt. Lett. 29, 993–1009 (1982).

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

1973

P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” Principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Acree, M.

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

Berginc, G.

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16(23), 19304–19309 (2008).
[CrossRef] [PubMed]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Blasi, B.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

Bouffaron, R.

Buhler, C.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

Busch, K.

K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[CrossRef]

Chang, T. W.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
[CrossRef]

Chang, Y. C.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
[CrossRef]

Chi, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[CrossRef] [PubMed]

Chou, S. Y.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” Principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Dobrowolski, J. A.

Escoubas, L.

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16(23), 19304–19309 (2008).
[CrossRef] [PubMed]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Flory, F.

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16(23), 19304–19309 (2008).
[CrossRef] [PubMed]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Gao, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[CrossRef] [PubMed]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Giovannini, H.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Gombert, A.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

Grann, E. B.

Hao, J.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[CrossRef] [PubMed]

Hoßfeld, W.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” Principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

John, S.

K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[CrossRef]

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

Lee, C. K.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
[CrossRef]

Lin, D. Z.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
[CrossRef]

Loli, M.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Lu, N.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[CrossRef] [PubMed]

Ma, P.

Mao, G.

Y. Zhao, J. Wang, and G. Mao, “Colloidal subwavelength nanostructures for antireflection optical coatings,” Opt. Lett. 29, 993–1009 (1982).

Masclet, P.

Mei, G. H.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
[CrossRef]

Mick, J.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

Niggemann, M.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

Nitz, P.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

Poitras, D.

Pommet, D. A.

Qi, D.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[CrossRef] [PubMed]

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

Simon, J. J.

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16(23), 19304–19309 (2008).
[CrossRef] [PubMed]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Torchio, P.

Vakil, H.

Varga, M. G.

Wang, J.

Y. Zhao, J. Wang, and G. Mao, “Colloidal subwavelength nanostructures for antireflection optical coatings,” Opt. Lett. 29, 993–1009 (1982).

Wang, T. J.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
[CrossRef]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Xu, H.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[CrossRef] [PubMed]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

Yu, Z.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

Zhang, B.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, J. Wang, and G. Mao, “Colloidal subwavelength nanostructures for antireflection optical coatings,” Opt. Lett. 29, 993–1009 (1982).

Appl. Opt.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Nanotechnology

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects,” Nanotechnology 18(28), 285303 (2007).
[CrossRef]

Nature

P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” Principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Opt. Commun.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Opt. Eng.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43(11), 2525–2533 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Y. Zhao, J. Wang, and G. Mao, “Colloidal subwavelength nanostructures for antireflection optical coatings,” Opt. Lett. 29, 993–1009 (1982).

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated directly formed anodic porous masks,” Opt. Lett. 29, 993–1009 (1982).

Phys. Rev. Lett.

K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[CrossRef]

Small

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[CrossRef] [PubMed]

Other

H. A. Macleod, Thin film optical filters (Institute of Physics Publishing, London, 1986).

M. Born, and E. Wolf, Principles of Optics (Pergamon, London, 1980), 705 – 708.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Sketch of the structure of interest: a silicon substrate in which spheres have been pulled out bi-periodically at the surface. Period = 3 µm. The sphere radius and the position of sphere centers from the surface are the two parameters which can be adjusted to obtain the most efficient antireflective effect. (b) Sketch of the elementary pattern of the structure which is repeated bi-periodically at the surface.

Fig. 2
Fig. 2

Computed reflectance value mappings (in %) in normal incidence as a function of the sphere radius (horizontal axis) and the position of sphere centers from the surface (“offset” on the vertical axis). The period value is fixed at 3 µm and the wavelengths are respectively 3µm, 4 µm and 5 µm for Fig. 2(a), Fig. 2(b) and Fig. 2(c).

Fig. 3
Fig. 3

(a) Spectral reflectance values of the structure having a sphere radius = 0.88µm and a position of the sphere centers from the surface = −0.25µm, in normal incidence. (b) Spectral reflectance values of the structure having a sphere radius = 0.96µm and a position of the sphere centers from the surface = −0.25µm, in normal incidence.

Fig. 4
Fig. 4

Tilted SEM image of the patterned surface obtained after low energy plasma reactive ion etching and silica mask removing.

Fig. 5
Fig. 5

Measured (red curve) and computed (blue curve) spectral reflectance of the patterned silicon surface presented in Fig. 4.

Fig. 6
Fig. 6

Angular reflectance values of the structure having a sphere radius = 0.88µm and a position of the sphere centers from the surface = −0.25µm, at the wavelength 4 µm.

Metrics