Abstract

This paper reports an efficient fabrication of nanostructures on silicon substrates for surface-enhanced Raman scattering (SERS). Silicon wafer substrates in the aqueous solution of silver nitrate were machined by the femtosecond laser direct writing to achieve simultaneously in one-step the generation of grating-like nanostructures on the surface of the substrate and the formation of silver nanoparticles on the surface of the nanostructures via the laser-induced photoreduction effect. Parametric studies were conducted for the different concentrations of aqueous silver nitrate solutions and scanning speeds. The enhancement factor of the SERS is found to be higher than 109. The patterning technique provides an opportunity to incorporate the SERS capability in a functional microchip.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [CrossRef]
  3. C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
    [CrossRef] [PubMed]
  4. P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
    [CrossRef]
  5. L. Su, C. J. Rowlands, and S. R. Elliott, “Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates,” Opt. Lett. 34(11), 1645–1647 (2009).
    [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  7. R. J. C. Brown and J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
    [CrossRef]
  8. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
    [CrossRef]
  9. H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80(25), 2728–2731 (1976).
    [CrossRef]
  10. R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(4), 376–380 (2009).
    [CrossRef]
  11. X. Tian, K. Chen, and G. Cao, “Seedless, surfactantless photoreduction synthesis of silver nanoplates,” Mater. Lett. 60(6), 828–830 (2006).
    [CrossRef]
  12. H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19(16), 2386–2391 (2009).
    [CrossRef]
  13. Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
    [CrossRef]
  14. S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), 1174–1179 (2008).
    [CrossRef] [PubMed]
  15. A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
    [CrossRef]
  16. S. J. Henley and S. R. P. Silva, “Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 91(2), 023107 (2007).
    [CrossRef]
  17. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  18. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [CrossRef] [PubMed]
  19. C. H. Lin, L. Jiang, H. Xiao, Y. H. Chai, S. J. Chen, and H. L. Tsai, “Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser,” Opt. Lett. 34(16), 2408–2410 (2009).
    [CrossRef] [PubMed]
  20. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
    [CrossRef]
  21. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
    [CrossRef]
  22. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
    [CrossRef]
  23. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
    [CrossRef] [PubMed]
  24. M. Futamata and Y. Maruyama, “Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering,” Anal. Bioanal. Chem. 388(1), 89–102 (2007).
    [CrossRef] [PubMed]
  25. Y. Han, C. H. Lin, H. Xiao, and H. L. Tsai, “Femtosecond laser-induced silicon surface morphology in water confinement,” Microsyst. Technol. 15(7), 1045–1049 (2009).
    [CrossRef]
  26. T. Kondo, K. Nishio, and H. Masuda, “Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix,” Appl. Phys. Express 2, 032001 (2009).
    [CrossRef]
  27. I. W. Sztainbuch, “The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement,” J. Chem. Phys. 125(12), 124707 (2006).
    [CrossRef] [PubMed]
  28. P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
    [CrossRef]
  29. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
    [CrossRef]
  30. G. L. Liu and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87(7), 074101 (2005).
    [CrossRef]

2009

L. Su, C. J. Rowlands, and S. R. Elliott, “Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates,” Opt. Lett. 34(11), 1645–1647 (2009).
[CrossRef] [PubMed]

H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19(16), 2386–2391 (2009).
[CrossRef]

R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(4), 376–380 (2009).
[CrossRef]

C. H. Lin, L. Jiang, H. Xiao, Y. H. Chai, S. J. Chen, and H. L. Tsai, “Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser,” Opt. Lett. 34(16), 2408–2410 (2009).
[CrossRef] [PubMed]

Y. Han, C. H. Lin, H. Xiao, and H. L. Tsai, “Femtosecond laser-induced silicon surface morphology in water confinement,” Microsyst. Technol. 15(7), 1045–1049 (2009).
[CrossRef]

T. Kondo, K. Nishio, and H. Masuda, “Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix,” Appl. Phys. Express 2, 032001 (2009).
[CrossRef]

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

2008

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
[CrossRef]

S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), 1174–1179 (2008).
[CrossRef] [PubMed]

R. J. C. Brown and J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
[CrossRef]

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

2007

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

M. Futamata and Y. Maruyama, “Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering,” Anal. Bioanal. Chem. 388(1), 89–102 (2007).
[CrossRef] [PubMed]

S. J. Henley and S. R. P. Silva, “Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 91(2), 023107 (2007).
[CrossRef]

2006

I. W. Sztainbuch, “The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement,” J. Chem. Phys. 125(12), 124707 (2006).
[CrossRef] [PubMed]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[CrossRef]

X. Tian, K. Chen, and G. Cao, “Seedless, surfactantless photoreduction synthesis of silver nanoplates,” Mater. Lett. 60(6), 828–830 (2006).
[CrossRef]

2005

G. L. Liu and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87(7), 074101 (2005).
[CrossRef]

2004

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[CrossRef]

2002

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1993

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

1982

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[CrossRef]

1977

D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

1976

H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80(25), 2728–2731 (1976).
[CrossRef]

1974

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

1973

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[CrossRef]

Agarwal, A.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Balasubramanian, N.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Bonse, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Brown, R. J. C.

R. J. C. Brown and J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
[CrossRef]

Buddharaju, K. D.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Campbell, J. C.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Cao, G.

X. Tian, K. Chen, and G. Cao, “Seedless, surfactantless photoreduction synthesis of silver nanoplates,” Mater. Lett. 60(6), 828–830 (2006).
[CrossRef]

Carey, J. E.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[CrossRef]

Chai, Y. H.

Chen, I. G.

H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19(16), 2386–2391 (2009).
[CrossRef]

Chen, K.

X. Tian, K. Chen, and G. Cao, “Seedless, surfactantless photoreduction synthesis of silver nanoplates,” Mater. Lett. 60(6), 828–830 (2006).
[CrossRef]

Chen, S. J.

Cheng, Y.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
[CrossRef]

Crouch, C. H.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Diebold, E. D.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Doorn, S. K.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Elliott, S. R.

Fang, C.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Futamata, M.

M. Futamata and Y. Maruyama, “Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering,” Anal. Bioanal. Chem. 388(1), 89–102 (2007).
[CrossRef] [PubMed]

Garland, M. V.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Genin, F. Y.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[CrossRef]

Guo, X.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Hada, H.

H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80(25), 2728–2731 (1976).
[CrossRef]

Han, Y.

Y. Han, C. H. Lin, H. Xiao, and H. L. Tsai, “Femtosecond laser-induced silicon surface morphology in water confinement,” Microsyst. Technol. 15(7), 1045–1049 (2009).
[CrossRef]

T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Hathaway, C. E.

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[CrossRef]

Hawkins, A. R.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Henley, S. J.

S. J. Henley and S. R. P. Silva, “Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 91(2), 023107 (2007).
[CrossRef]

Huang, Z.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Hulteen, J. C.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Jiang, L.

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Kawata, S.

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[CrossRef]

Khalid, N. M.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kondo, T.

T. Kondo, K. Nishio, and H. Masuda, “Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix,” Appl. Phys. Express 2, 032001 (2009).
[CrossRef]

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Kurakake, A.

H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80(25), 2728–2731 (1976).
[CrossRef]

Kwong, D. L.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Lee, L. P.

G. L. Liu and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87(7), 074101 (2005).
[CrossRef]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[CrossRef]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Lin, C. H.

C. H. Lin, L. Jiang, H. Xiao, Y. H. Chai, S. J. Chen, and H. L. Tsai, “Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser,” Opt. Lett. 34(16), 2408–2410 (2009).
[CrossRef] [PubMed]

Y. Han, C. H. Lin, H. Xiao, and H. L. Tsai, “Femtosecond laser-induced silicon surface morphology in water confinement,” Microsyst. Technol. 15(7), 1045–1049 (2009).
[CrossRef]

Liu, G. L.

G. L. Liu and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87(7), 074101 (2005).
[CrossRef]

Liu, M.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

Lunt, E. J.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Mack, N. H.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Maruo, S.

Maruyama, Y.

M. Futamata and Y. Maruyama, “Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering,” Anal. Bioanal. Chem. 388(1), 89–102 (2007).
[CrossRef] [PubMed]

Masuda, H.

T. Kondo, K. Nishio, and H. Masuda, “Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix,” Appl. Phys. Express 2, 032001 (2009).
[CrossRef]

Mazur, E.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Measor, P.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[CrossRef]

Midorikawa, K.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
[CrossRef]

Milton, J. T.

R. J. C. Brown and J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
[CrossRef]

Nishio, K.

T. Kondo, K. Nishio, and H. Masuda, “Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix,” Appl. Phys. Express 2, 032001 (2009).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Redón, R.

R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(4), 376–380 (2009).
[CrossRef]

Rowlands, C. J.

Saeki, T.

Salim, S. M.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Saniger, J. M.

R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(4), 376–380 (2009).
[CrossRef]

Sato-Berrú, R.

R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(4), 376–380 (2009).
[CrossRef]

Schmidt, H.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Seballos, L.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Shen, M.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[CrossRef]

Silva, S. R. P.

S. J. Henley and S. R. P. Silva, “Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 91(2), 023107 (2007).
[CrossRef]

Song, J. M.

H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19(16), 2386–2391 (2009).
[CrossRef]

Su, L.

Sugioka, K.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
[CrossRef]

Sztainbuch, I. W.

I. W. Sztainbuch, “The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement,” J. Chem. Phys. 125(12), 124707 (2006).
[CrossRef] [PubMed]

Tanaka, T.

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[CrossRef]

Temple, P. A.

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[CrossRef]

Tian, X.

X. Tian, K. Chen, and G. Cao, “Seedless, surfactantless photoreduction synthesis of silver nanoplates,” Mater. Lett. 60(6), 828–830 (2006).
[CrossRef]

Treichel, D. A.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

Tsai, H. L.

Tung, H. T.

H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19(16), 2386–2391 (2009).
[CrossRef]

Van Duyne, R. P.

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Vázquez-Olmos, A.

R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(4), 376–380 (2009).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wei, T.

Widjaja, E.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Xiao, H.

Xu, J.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
[CrossRef]

Xu, Z.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
[CrossRef]

Yen, C. W.

H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19(16), 2386–2391 (2009).
[CrossRef]

Yin, D.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Yonezawa, Y.

H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80(25), 2728–2731 (1976).
[CrossRef]

Yoshida, A.

H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80(25), 2728–2731 (1976).
[CrossRef]

Zhang, J. Z.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Zhou, Z.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
[CrossRef]

Anal. Bioanal. Chem.

M. Futamata and Y. Maruyama, “Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering,” Anal. Bioanal. Chem. 388(1), 89–102 (2007).
[CrossRef] [PubMed]

Appl. Phys. Express

T. Kondo, K. Nishio, and H. Masuda, “Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix,” Appl. Phys. Express 2, 032001 (2009).
[CrossRef]

Appl. Phys. Lett.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[CrossRef]

G. L. Liu and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87(7), 074101 (2005).
[CrossRef]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).
[CrossRef]

S. J. Henley and S. R. P. Silva, “Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 91(2), 023107 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[CrossRef]

Biosens. Bioelectron.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Chem. Phys. Lett.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

J. Chem. Phys.

I. W. Sztainbuch, “The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement,” J. Chem. Phys. 125(12), 124707 (2006).
[CrossRef] [PubMed]

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993).
[CrossRef]

J. Electroanal. Chem.

D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

J. Mater. Chem.

H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19(16), 2386–2391 (2009).
[CrossRef]

J. Phys. Chem.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[CrossRef]

H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80(25), 2728–2731 (1976).
[CrossRef]

J. Raman Spectrosc.

R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(4), 376–380 (2009).
[CrossRef]

R. J. C. Brown and J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008).
[CrossRef]

Langmuir

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Mater. Lett.

X. Tian, K. Chen, and G. Cao, “Seedless, surfactantless photoreduction synthesis of silver nanoplates,” Mater. Lett. 60(6), 828–830 (2006).
[CrossRef]

Microsyst. Technol.

Y. Han, C. H. Lin, H. Xiao, and H. L. Tsai, “Femtosecond laser-induced silicon surface morphology in water confinement,” Microsyst. Technol. 15(7), 1045–1049 (2009).
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[CrossRef]

Phys. Rev. Lett.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Surface morphologies of the machined silicon wafer substrates in de-ionized water with scanning speeds of (a) 10 mm/min, (b) 5 mm/min, (c) 2 mm/min, (d) 1 mm/min, and (e) 0.5 mm/min.

Fig. 2
Fig. 2

Surface morphologies of the machined silicon wafer substrates in 0.1 M silver nitrate solutions with different scanning speeds. (a) 10 mm/min. (b) 5 mm/min. (c) 2 mm/min. (d) 1 mm/min. (e) 0.5 mm/min.

Fig. 3
Fig. 3

EDS mapping of the sample machined in 0.1 M silver nitrate solutions at a scanning speed of 1 mm/min. (a) SEM image of the mapping area. The scale bar is 500 nm. (b) silver mapping. (c) silicon mapping.

Fig. 4
Fig. 4

Surface morphologies of the machined silicon wafer substrates in different concentrations of silver nitrate solutions with a scanning speed of 0.5 mm/min. (a) 1 mM. (b) 10 mM. (c) 0.1 M. (d) 1 M.

Fig. 5
Fig. 5

SERS intensity vs. NLPDUA in different concentrations of silver nitrate solutions.

Fig. 6
Fig. 6

SERS and Raman spectra. Black: SERS spectrum of 10−7 M R6G measured in the area machined by fs laser in the 0.1 M silver nitrate solution. blue: SERS spectrum of 10−7 M R6G measured in the un-machined area. red: Raman spectrum of 10−3 M R6G measured in the area machined by fs laser in the de-ionized water. green: magnified (10 × ) Raman spectrum of 10−3 M R6G measured in the area machined by fs laser in the de-ionized water.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF = I SERS N SERS / I nR N nR

Metrics