Abstract

The ability of dynamic extraction of remote sounds is very appealing. In this manuscript we propose an optical approach allowing the extraction and the separation of remote sound sources. The approach is very modular and it does not apply any constraints regarding the relative position of the sound sources and the detection device. The optical setup doing the detection is very simple and versatile. The principle is to observe the movement of the secondary speckle patterns that are generated on top of the target when it is illuminated by a spot of laser beam. Proper adaption of the imaging optics allows following the temporal trajectories of those speckles and extracting the sound signals out of the processed trajectory. Various sound sources are imaged in different spatial pixels and thus blind source separation becomes a very simple task.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Peter Yapp, "Who’s Bugging You? How Are You Protecting Your Information?," Information Security Technical Report 5, 23-33 (2000).
    [CrossRef]
  2. L. Hasan, N. Yu, and J. Paradiso, "The Termenova: A hybrid free-gesture interface," Proceeding of the 2002 conference on new instrumentations for musical expression (NIME-02), Dublin, Ireland, May 24-26 2002.
  3. SPIE session on biomedical OptoAcoustics, Vol. 3916, California (Jan. 2000): http://www.spie.org/web/meetings/programs/pw00/confs/3916.html.
  4. Z. Zalevsky and J. Garcia, "Motion detection system and method," Israeli Patent Application No. 184868 (July 2007).
  5. J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, Berlin, 1989).
  6. H. M. Pedersen, "Intensity correlation metrology: a comparative study," Opt. Acta 29, 105-118 (1982).
    [CrossRef]
  7. J. A. Leedertz, "Interferometric displacement measurements on scattering surfaces utilizing speckle effects," J. Phy. E. Sci. Instrum. 3, 214-218 (1970).
    [CrossRef]
  8. P. K. Rastogi, and P. Jacquot, "Measurement on difference deformation using speckle interferometry," Opt. Lett. 12, 596-598 (1987).
    [CrossRef] [PubMed]
  9. T. C.  Chu, W. F.  Ranson, and M. A.  Sutton, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech 25, 232-244 (1985).
    [CrossRef]
  10. W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1982).
  11. N. Takai, T. Iwai, T. Ushizaka, and T. Asakura, "Zero crossing study on dynamic properties of speckles," J. Opt. (Paris) 11, 93-101 (1980).
    [CrossRef]
  12. K. Uno, J. Uozumi, and T. Asakura, "Correlation properties of speckles produced by diffractal-illuminated diffusers," Opt. Commun. 124, 16-22 (1996).
    [CrossRef]
  13. J. García, Z. Zalevsky, P. García-Martínez, C. Ferreira, M. Teicher, Y. Beiderman, and A. Shpunt, "3D Mapping and Range Measurement by Means of Projected Speckle Patterns," Appl. Opt. 47, 3032-3040 (2008).
    [CrossRef] [PubMed]
  14. J. Garcia, Z. Zalevsky, and D. Fixler, "Synthetic aperture superresolution by speckle pattern projection," Opt. Express 13, 6073-6078 (2005).
    [CrossRef] [PubMed]
  15. D. Bansal, B. Raj, and P. Smaragdis, "Bandwidth expansion of narrowband speech using non negative matrix factorization," paper TR2005-135, 9th European Conference on Speech Communication (Eurospeech) 2005.
  16. High speed digital cameras: http://www.photron.com/.

2008

2005

2000

Peter Yapp, "Who’s Bugging You? How Are You Protecting Your Information?," Information Security Technical Report 5, 23-33 (2000).
[CrossRef]

1996

K. Uno, J. Uozumi, and T. Asakura, "Correlation properties of speckles produced by diffractal-illuminated diffusers," Opt. Commun. 124, 16-22 (1996).
[CrossRef]

1987

1985

T. C.  Chu, W. F.  Ranson, and M. A.  Sutton, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech 25, 232-244 (1985).
[CrossRef]

1982

W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1982).

H. M. Pedersen, "Intensity correlation metrology: a comparative study," Opt. Acta 29, 105-118 (1982).
[CrossRef]

1980

N. Takai, T. Iwai, T. Ushizaka, and T. Asakura, "Zero crossing study on dynamic properties of speckles," J. Opt. (Paris) 11, 93-101 (1980).
[CrossRef]

1970

J. A. Leedertz, "Interferometric displacement measurements on scattering surfaces utilizing speckle effects," J. Phy. E. Sci. Instrum. 3, 214-218 (1970).
[CrossRef]

Asakura, T.

K. Uno, J. Uozumi, and T. Asakura, "Correlation properties of speckles produced by diffractal-illuminated diffusers," Opt. Commun. 124, 16-22 (1996).
[CrossRef]

N. Takai, T. Iwai, T. Ushizaka, and T. Asakura, "Zero crossing study on dynamic properties of speckles," J. Opt. (Paris) 11, 93-101 (1980).
[CrossRef]

Beiderman, Y.

Chu, T. C.

T. C.  Chu, W. F.  Ranson, and M. A.  Sutton, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech 25, 232-244 (1985).
[CrossRef]

Ferreira, C.

Fixler, D.

Garcia, J.

García, J.

García-Martínez, P.

Iwai, T.

N. Takai, T. Iwai, T. Ushizaka, and T. Asakura, "Zero crossing study on dynamic properties of speckles," J. Opt. (Paris) 11, 93-101 (1980).
[CrossRef]

Jacquot, P.

Leedertz, J. A.

J. A. Leedertz, "Interferometric displacement measurements on scattering surfaces utilizing speckle effects," J. Phy. E. Sci. Instrum. 3, 214-218 (1970).
[CrossRef]

Pedersen, H. M.

H. M. Pedersen, "Intensity correlation metrology: a comparative study," Opt. Acta 29, 105-118 (1982).
[CrossRef]

Peters, W. H.

W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1982).

Ranson, W. F.

W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1982).

Ranson, W. F.

T. C.  Chu, W. F.  Ranson, and M. A.  Sutton, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech 25, 232-244 (1985).
[CrossRef]

Rastogi, P. K.

Shpunt, A.

Sutton, M. A.

T. C.  Chu, W. F.  Ranson, and M. A.  Sutton, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech 25, 232-244 (1985).
[CrossRef]

Takai, N.

N. Takai, T. Iwai, T. Ushizaka, and T. Asakura, "Zero crossing study on dynamic properties of speckles," J. Opt. (Paris) 11, 93-101 (1980).
[CrossRef]

Teicher, M.

Uno, K.

K. Uno, J. Uozumi, and T. Asakura, "Correlation properties of speckles produced by diffractal-illuminated diffusers," Opt. Commun. 124, 16-22 (1996).
[CrossRef]

Uozumi, J.

K. Uno, J. Uozumi, and T. Asakura, "Correlation properties of speckles produced by diffractal-illuminated diffusers," Opt. Commun. 124, 16-22 (1996).
[CrossRef]

Ushizaka, T.

N. Takai, T. Iwai, T. Ushizaka, and T. Asakura, "Zero crossing study on dynamic properties of speckles," J. Opt. (Paris) 11, 93-101 (1980).
[CrossRef]

Zalevsky, Z.

Appl. Opt.

Exp. Mech

T. C.  Chu, W. F.  Ranson, and M. A.  Sutton, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech 25, 232-244 (1985).
[CrossRef]

Information Security Technical Report

Peter Yapp, "Who’s Bugging You? How Are You Protecting Your Information?," Information Security Technical Report 5, 23-33 (2000).
[CrossRef]

J. Opt. (Paris)

N. Takai, T. Iwai, T. Ushizaka, and T. Asakura, "Zero crossing study on dynamic properties of speckles," J. Opt. (Paris) 11, 93-101 (1980).
[CrossRef]

J. Phy. E. Sci. Instrum.

J. A. Leedertz, "Interferometric displacement measurements on scattering surfaces utilizing speckle effects," J. Phy. E. Sci. Instrum. 3, 214-218 (1970).
[CrossRef]

Opt. Acta

H. M. Pedersen, "Intensity correlation metrology: a comparative study," Opt. Acta 29, 105-118 (1982).
[CrossRef]

Opt. Commun.

K. Uno, J. Uozumi, and T. Asakura, "Correlation properties of speckles produced by diffractal-illuminated diffusers," Opt. Commun. 124, 16-22 (1996).
[CrossRef]

Opt. Eng.

W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1982).

Opt. Express

Opt. Lett.

Other

L. Hasan, N. Yu, and J. Paradiso, "The Termenova: A hybrid free-gesture interface," Proceeding of the 2002 conference on new instrumentations for musical expression (NIME-02), Dublin, Ireland, May 24-26 2002.

SPIE session on biomedical OptoAcoustics, Vol. 3916, California (Jan. 2000): http://www.spie.org/web/meetings/programs/pw00/confs/3916.html.

Z. Zalevsky and J. Garcia, "Motion detection system and method," Israeli Patent Application No. 184868 (July 2007).

J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, Berlin, 1989).

D. Bansal, B. Raj, and P. Smaragdis, "Bandwidth expansion of narrowband speech using non negative matrix factorization," paper TR2005-135, 9th European Conference on Speech Communication (Eurospeech) 2005.

High speed digital cameras: http://www.photron.com/.

Supplementary Material (4)

» Media 1: WAV (20 KB)     
» Media 2: WAV (12 KB)     
» Media 3: WAV (10 KB)     
» Media 4: WAV (20 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Schematic description of the system.

Fig. 2.
Fig. 2.

(a). The image of the loudspeakers. (b). The signal sent to the left loudspeakers. (c). The reconstructed spectrogram of the left loudspeaker. (d). The reconstructed spectrogram of the right loudspeaker.

Fig. 3.
Fig. 3.

(a).–(b). Two consequential speckle patterns. (c). The defocused image of the target with the projected spot on top of it. (d). The extraction of the temporal speech signal (a scream). (e). The spectrogram of the signal of 3d.

Fig. 4.
Fig. 4.

One of the experimental setups for far range detection.

Fig. 5.
Fig. 5.

Taping cellular phone. The person on the other side of the line is counting 1,2,3,4,5,6… (a). Image of the cellular phone. (b). (Media 1) The reconstructed taped signal.

Fig. 6.
Fig. 6.

Listening to talks from the back part of the neck. The person is counting 5,6,7… (a). Image of the subject. (b). (Media 2) The reconstructed signal.

Fig. 7.
Fig. 7.

Listening to talks from the profile of the face. The person is counting 5,6…. (a). Image of the subject. (b). (Media 3) The reconstructed signal.

Fig. 8.
Fig. 8.

Listening to heart beats. (a). Image of the subject. (b). (Media 4) The reconstructed signal.

Fig. 9.
Fig. 9.

(a). The temporal voice signal. (b). The spectrogram.

Fig. 10.
Fig. 10.

Experimental results for heart beats detection of remote subject. (a). The temporal signal. (b). The spectrogram.

Fig. 11.
Fig. 11.

Experimental results for recording through a window at 30 meters across very noise construction site of talking subject. Recording from forehead. (a). The temporal signal. (b). The spectrogram. (c). The scenario of the experiment.

Fig. 12.
Fig. 12.

Experimental results for speech detection with IR laser. (a). The temporal signal. (b). The spectrogram.

Fig. 13.
Fig. 13.

Spectral components of OCG signature. (a)-(d) Reconstruction after projecting on hand joints. (e)-(f) Reconstruction after projection on the throat. (a). Subject #1 at rest sampled at 20Hz. (b). Subject #1 at physical strain while sampled at 20Hz. (c). Subject #2 at rest while sampled at 100Hz. (d). Subject #2 at physical strain while sampled at 100Hz. (e) Subject #3 at rest while sampled at 100Hz. (f). Subject #3 at physical strain while sampled at 100Hz.

Fig. 14.
Fig. 14.

Temporal OCG signature. (a). Temporal signature of subject #4. (b). Temporal signature of subject #5 and correlation peaks designating that indeed its temporal signature is repeatable. (c). Temporal signature of subject #6. (d). Temporal signature of subject #6 recorded in a different day. The signature is repeatable. (e). Temporal signature of subject #7. (f). Temporal signature of subject #8. Different subjects have different signature.

Fig. 15.
Fig. 15.

Using OCG for identifying individuals. (a). The measurement configuration. (b). Identification of subjects from an existing pool. (c). Percentages of success and error.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

T m ( x o , y o ) = exp [ ( x , y ) ] exp [ πi λZ 1 ( ( x x o ) 2 + ( y y o ) 2 ) ] dx dy = A m ( x o , y o ) exp [ ( x o , y o ) ]
I ( x s , y s ) = T m ( x o , y o ) h ( x o Mx s , y o My s ) 2
M = ( Z 2 + Z 3 Z 1 ) F F
M = Z 2 + Z 3 F Z 2 Z 1 + Z 3 F
A m ( x o , y o ) = exp [ i ϕ ( x , y ) ] exp [ i ( β x x + β y y ) ] exp [ πi λZ 1 ( ( x x o ) 2 + ( y y o ) 2 ) ] dx dy
β x = 4 π tan α x λ
β y = 4 π tan α y λ
T m ( x o , y o ) = exp [ ( x , y ) ] exp [ 2 πi λZ 2 ( xx o + yy o ) ] dx dy = A m ( x o , y o ) exp [ ( x o , y o ) ]
I ( x s , y s ) = T m ( x o , y o ) h ( x o Mx s , y o My s ) 2
M = Z 3 F F Z 3 F
A m ( x o , y o ) = exp [ i ϕ ( x , y ) ] exp [ i ( β x x + β y y ) ] exp [ 2 πi λZ 2 ( xx o + yy o ) ] dx dy
β x = 4 π tan α x λ
β y = 4 π tan α y λ
δx = λZ 2 D · 1 M = λF D · Z 2 Z 3
d = Z 2 α M = Z 2 F Z 3
F = K Δ x Z 3 D Z 2 λ
Z 2 > D 2 4 λ
N = ϕ Mδx = ϕD λZ 2 = F D F # λ Z 2

Metrics