Abstract

We have developed the plasmonic interference lithography technique to achieve the feature sizes theoretically down to sub-22 nm even to 16.5 nm by using dielectric-metal multilayer (DMM) with diffraction-limited masks at the wavelength of 193 nm with p-polarization. An 8 pairs of GaN (10 nm) / Al (12 nm) multilayer is designed as a filter allowing only a part of high wavevector k (evanescent waves) to pass through for interference lithography. The analysis of the influence by the number of DMM layers is presented. 4 pairs of the proposed multilayer can be competent for pattern the minimal feature size down to 21.5 nm at the visibility about 0.4 to satisfy the minimum visibility required with positive resist. Finite-difference time-domain analysis method is used to demonstrate the validity of the theory.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
    [CrossRef]
  2. J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998).
    [CrossRef]
  3. T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, “22-nm immersion interference lithography,” Opt. Express 14(14), 6434–6443 (2006).
    [CrossRef] [PubMed]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer, Heidelberg, 1988).
  5. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [CrossRef]
  6. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [CrossRef] [PubMed]
  7. T. Xu, Y. Zhao, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008).
    [CrossRef] [PubMed]
  8. Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
    [CrossRef]
  9. V. M. Murukeshan and K. V. Sreekanth, “Excitation of gap modes in a metal particle-surface system for sub-30 nm plasmonic lithography,” Opt. Lett. 34(6), 845–847 (2009).
    [CrossRef] [PubMed]
  10. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
    [CrossRef] [PubMed]
  11. M. J. Madou, Fundamentals of Microfabrication, (CRC, Boca Raton, 2002).
  12. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  13. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [CrossRef] [PubMed]
  14. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
    [CrossRef]
  15. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavlength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
    [CrossRef]
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  18. M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).
  19. L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999).
    [CrossRef]
  20. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [CrossRef] [PubMed]

2009 (1)

2008 (3)

T. Xu, Y. Zhao, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

2007 (2)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

2006 (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavlength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, “22-nm immersion interference lithography,” Opt. Express 14(14), 6434–6443 (2006).
[CrossRef] [PubMed]

2005 (1)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

2004 (1)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

2001 (1)

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

1999 (1)

L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999).
[CrossRef]

1998 (1)

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998).
[CrossRef]

1995 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Avrutsky, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[CrossRef]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Bates, A. K.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

Bloomstein, T. M.

T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, “22-nm immersion interference lithography,” Opt. Express 14(14), 6434–6443 (2006).
[CrossRef] [PubMed]

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

Chou, S. Y.

L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cui, B.

L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999).
[CrossRef]

Cui, J.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Deneault, S.

Du, C.

Elser, J.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[CrossRef]

Fedynyshyn, T. H.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Hardy, D. E.

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kong, L.

L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999).
[CrossRef]

Kunz, R. R.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Li, M.

L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999).
[CrossRef]

Liberman, V.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Luo, X.

T. Xu, Y. Zhao, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

Marchant, M. F.

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Moharam, M. G.

Murukeshan, V. M.

Pan, Q.

L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavlength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

Podolskiy, V.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[CrossRef]

Pommet, D. A.

Rothschild, M.

T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, “22-nm immersion interference lithography,” Opt. Express 14(14), 6434–6443 (2006).
[CrossRef] [PubMed]

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

Salakhutdinov, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Silverman, J. P.

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sreekanth, K. V.

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Switkes, M.

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavlength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

Wang, C.

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavlength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

Xiong, Y.

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Xu, T.

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Zhao, Y.

Appl. Phys. Lett. (2)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[CrossRef]

IBM J. Res. Develop. (1)

A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001).
[CrossRef]

J. Appl. Phys. (1)

L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998).
[CrossRef]

Nano Lett. (2)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[CrossRef]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavlength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Other (3)

M. J. Madou, Fundamentals of Microfabrication, (CRC, Boca Raton, 2002).

M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer, Heidelberg, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the plasmonic interference lithography with dielectric-metal multilayer.

Fig. 2
Fig. 2

The transmitted amplitude VS the transverse wavenumber for an 8 pairs of 10 nm GaN and 12 nm Al multilayer at a wavelength of 193 nm with p-polarization.

Fig. 3
Fig. 3

The distribution of simulated electric-field intensities for the mask with periods of (a) 86 nm, and (c) 66 nm. The zero value along the vertical axis corresponds to the multilayer/ photoresist interface. The corresponding electric-field intensities at the planes 0 (red), 10 nm (blue), and 20 nm (black) are shown in (b) and (d), respectively.

Fig. 4
Fig. 4

The feature sizes VS the visibility and the normalized electric field intensity, respectively, with the proposed dielectric-metal multilayer. The black square and the red solid circle represent visibility with theoretical and simulation results, respectively. The blue triangle represents the average normalized intensity 5 nm below the interface of multilayer/photoresist.

Fig. 5
Fig. 5

The feature sizes VS the visibility and the normalized electric field intensity with (a) 4 pairs and (b) 12 pairs of the GaN(10 nm)/Al(12 nm) DMM layers, respectively. The black square and the red solid circle represent visibility with theoretical and simulation results, respectively. The blue triangle represents the average normalized intensity 5 nm below the interface of multilayer/photoresist. The transmitted amplitude of the two structures at the wavelength of 193 nm is also presented (see inset).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k x = k 0 sin θ + 2 π m Λ ,
V = | E z 2 E x 2 E z 2 + E x 2 | = ε PR k 0 2 2 k x 2 ε PR k 0 2 ,

Metrics