Abstract

We report on the development of a stable Photonic Crystal Fiber (PCF) based two-mode interferometric sensor for ultra-high temperature measurements (up to 1000°C). The device consists of a stub of PCF spliced to standard optical fiber. In the splice regions, the voids of the PCF are fully collapsed, thus allowing the excitation and recombination of two core modes. The device spectrum exhibits sinusoidal interference pattern which shifts with temperature. We show that, despite being compact and robust, the proposed sensor head needs a quite long burn in (thermal annealing) to achieve an adequate and stable functionality level. The burn in process eliminates the residual stress in the fiber structure, which had been accumulated during the drawing phase, and changes the glass fictive temperature.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rose, "Devitrification in annealed optical fiber," J. Lightwave Technology,  15(5), 808-814 (1997).
    [CrossRef]
  2. A. H. Rose and T. J. Bruno, "The observation of OH in annealed optical fiber," J. Non-Cryst. Solids 231(3), 280- 285 (1998).
    [CrossRef]
  3. S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, "High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber," Opt. Lett. 30, 607-609 (2005).
    [CrossRef] [PubMed]
  4. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, "Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm," Opt. Lett. 33, 1917-1919 (2008).
    [CrossRef] [PubMed]
  5. K. Cook, A. A. P. Pohl, and J. Canning, "High-temperature type IIa gratings in 12-ring photonic crystal fibre with germanosilicate core," J. Europ. Opt. Soc. Rap. Public. 3, 08,031 (2008).
  6. V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, "Single- and double-helix chiral fiber sensors," J. Opt. Soc. Am. B 24(10), A48-A52 (2007).
    [CrossRef]
  7. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured FabryPerot interferometer," Opt. Lett. 33, 2455-2457 (2008).
    [CrossRef] [PubMed]
  8. M. Fokine, "Formation of thermally stable chemical composition gratings in optical fibers," J. Opt. Soc. Am. B 19(8), 1759-1765 (2002).
    [CrossRef]
  9. A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
    [CrossRef]
  10. D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, "High-temperature sensing with tapers made of microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 511- 513 (2006).
    [CrossRef]
  11. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser," Opt. Lett. 33, 536-538 (2008).
    [CrossRef] [PubMed]
  12. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007).
    [CrossRef]
  13. H. Y. Choi, K. S. Park, and B. H. Lee, "Photonic crystal fiber interferometer composed of a long period grating and one point collapsing of air holes," Opt. Lett. 33(8), 812-814 (2008).
    [CrossRef]
  14. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, "Encapsulated and coated photonic crystal fibre sensor for temperature measurements up to 1000◦C," in CLEO EUROPE - EQEC 2009. Conference on lasers and electrooptics- European Quantum Electronics Conference, p. CH1.6 (2009).
    [CrossRef] [PubMed]
  15. V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, "Photonic Crystal Fibre Sensor for High Temperature Energy Environment," in Optics and Photonics for Advanced Energy Technology, p. ThC1 (Optical Society of America, 2009).
  16. Y. Mohanna, J. Saugrain, J. Rousseau, and P. Ledoux, "Relaxation of internal stresses in optical fibers," J. Lightwave Technology,  8(12), 1799-1802 (1990).
    [CrossRef]
  17. T. S. Izumitani, Optical Glass (American Institute of Physics, New York, USA, 1986).
  18. J. E. Shelby, Introduction to Glass Science and Technology, 2nd ed. (The Royal Society of Chemistry, Cambridge, UK, 2005).

2008 (5)

2007 (2)

V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, "Single- and double-helix chiral fiber sensors," J. Opt. Soc. Am. B 24(10), A48-A52 (2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007).
[CrossRef]

2006 (1)

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, "High-temperature sensing with tapers made of microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 511- 513 (2006).
[CrossRef]

2005 (1)

2002 (1)

1998 (1)

A. H. Rose and T. J. Bruno, "The observation of OH in annealed optical fiber," J. Non-Cryst. Solids 231(3), 280- 285 (1998).
[CrossRef]

1997 (2)

A. Rose, "Devitrification in annealed optical fiber," J. Lightwave Technology,  15(5), 808-814 (1997).
[CrossRef]

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

1990 (1)

Y. Mohanna, J. Saugrain, J. Rousseau, and P. Ledoux, "Relaxation of internal stresses in optical fibers," J. Lightwave Technology,  8(12), 1799-1802 (1990).
[CrossRef]

Askins, C.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007).
[CrossRef]

Bandyopadhyay, S.

Baxter, G. W.

Bruno, T. J.

A. H. Rose and T. J. Bruno, "The observation of OH in annealed optical fiber," J. Non-Cryst. Solids 231(3), 280- 285 (1998).
[CrossRef]

Canning, J.

K. Cook, A. A. P. Pohl, and J. Canning, "High-temperature type IIa gratings in 12-ring photonic crystal fibre with germanosilicate core," J. Europ. Opt. Soc. Rap. Public. 3, 08,031 (2008).

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, "Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm," Opt. Lett. 33, 1917-1919 (2008).
[CrossRef] [PubMed]

Chao, N.

Choi, E. S.

Choi, H. Y.

Churikov, V. M.

Collins, S. F.

Cook, K.

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, "Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm," Opt. Lett. 33, 1917-1919 (2008).
[CrossRef] [PubMed]

K. Cook, A. A. P. Pohl, and J. Canning, "High-temperature type IIa gratings in 12-ring photonic crystal fibre with germanosilicate core," J. Europ. Opt. Soc. Rap. Public. 3, 08,031 (2008).

Davis, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

Draper, C. W.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007).
[CrossRef]

Fokine, M.

Friebele, E.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

Genack, A. Z.

Han, Y.

Kersey, A.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

Kitcher, D. J.

Koo, K.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

Kopp, V. I.

LeBlanc, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

Ledoux, P.

Y. Mohanna, J. Saugrain, J. Rousseau, and P. Ledoux, "Relaxation of internal stresses in optical fibers," J. Lightwave Technology,  8(12), 1799-1802 (1990).
[CrossRef]

Lee, B. H.

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007).
[CrossRef]

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, "High-temperature sensing with tapers made of microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 511- 513 (2006).
[CrossRef]

Mohanna, Y.

Y. Mohanna, J. Saugrain, J. Rousseau, and P. Ledoux, "Relaxation of internal stresses in optical fibers," J. Lightwave Technology,  8(12), 1799-1802 (1990).
[CrossRef]

Monzon-Hernandez, D.

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, "High-temperature sensing with tapers made of microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 511- 513 (2006).
[CrossRef]

Neugroschl, D.

Paek, U. C.

Park, K. S.

Park, S. J.

Patrick, H.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

Pohl, A. A. P.

K. Cook, A. A. P. Pohl, and J. Canning, "High-temperature type IIa gratings in 12-ring photonic crystal fibre with germanosilicate core," J. Europ. Opt. Soc. Rap. Public. 3, 08,031 (2008).

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007).
[CrossRef]

Putnam, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

Rose, A.

A. Rose, "Devitrification in annealed optical fiber," J. Lightwave Technology,  15(5), 808-814 (1997).
[CrossRef]

Rose, A. H.

A. H. Rose and T. J. Bruno, "The observation of OH in annealed optical fiber," J. Non-Cryst. Solids 231(3), 280- 285 (1998).
[CrossRef]

Rousseau, J.

Y. Mohanna, J. Saugrain, J. Rousseau, and P. Ledoux, "Relaxation of internal stresses in optical fibers," J. Lightwave Technology,  8(12), 1799-1802 (1990).
[CrossRef]

Saugrain, J.

Y. Mohanna, J. Saugrain, J. Rousseau, and P. Ledoux, "Relaxation of internal stresses in optical fibers," J. Lightwave Technology,  8(12), 1799-1802 (1990).
[CrossRef]

Singer, J.

Stevenson, M.

Trpkovski, S.

Tsai, H. L.

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007).
[CrossRef]

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, "High-temperature sensing with tapers made of microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 511- 513 (2006).
[CrossRef]

Wade, S. A.

Wei, T.

Xiao, H.

Zhang, G.

Appl. Phys. Lett. (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, "High-temperature sensing with tapers made of microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 511- 513 (2006).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public. (1)

K. Cook, A. A. P. Pohl, and J. Canning, "High-temperature type IIa gratings in 12-ring photonic crystal fibre with germanosilicate core," J. Europ. Opt. Soc. Rap. Public. 3, 08,031 (2008).

J. Lightwave Technol. (1)

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997).
[CrossRef]

J. Lightwave Technology (2)

A. Rose, "Devitrification in annealed optical fiber," J. Lightwave Technology,  15(5), 808-814 (1997).
[CrossRef]

Y. Mohanna, J. Saugrain, J. Rousseau, and P. Ledoux, "Relaxation of internal stresses in optical fibers," J. Lightwave Technology,  8(12), 1799-1802 (1990).
[CrossRef]

J. Non-Cryst. Solids (1)

A. H. Rose and T. J. Bruno, "The observation of OH in annealed optical fiber," J. Non-Cryst. Solids 231(3), 280- 285 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (5)

Other (4)

T. S. Izumitani, Optical Glass (American Institute of Physics, New York, USA, 1986).

J. E. Shelby, Introduction to Glass Science and Technology, 2nd ed. (The Royal Society of Chemistry, Cambridge, UK, 2005).

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, "Encapsulated and coated photonic crystal fibre sensor for temperature measurements up to 1000◦C," in CLEO EUROPE - EQEC 2009. Conference on lasers and electrooptics- European Quantum Electronics Conference, p. CH1.6 (2009).
[CrossRef] [PubMed]

V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, "Photonic Crystal Fibre Sensor for High Temperature Energy Environment," in Optics and Photonics for Advanced Energy Technology, p. ThC1 (Optical Society of America, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM image showing the hole pattern of the home-made fiber used to produce the devices. (b) Schematics of the proposed device, with the first splice zone, an image of which is shown in (f), highlighted. (c) The fundamental mode propagating into this kind of fiber, accordingly to our FEMsimulations. (d) The second order mode propagating into our home-made PCF. (e) A typical interference pattern obtained with the discussed device: the length of this device was 22.6 mm, the period was about 11 nm, the insertion loss was 9 dB and the contrast about 13 dB. (f) Microscope image of the splice zone between the SMF, on the left, and the PCF, on the right. It is possible to see the 300 µm collapsed region and that the PCF holey structure far from the splice zone is not affected by the heat.

Fig. 2.
Fig. 2.

(a) Measured values of the indices difference, their average value and the confidence interval. (b) Measured periods plotted as a function of the device lengths (circles) and the fit obtained using the average value of Δn of 9.54×10-3.

Fig. 3.
Fig. 3.

Experimental result of the first temperature cycle. The blue curve shows the temperature inside the oven as measured by the thermocouple, while the green curve shows the pattern shift, with the drop starting at a temperature of ≈850°C.

Fig. 4.
Fig. 4.

The temperature cycles used to anneal the device. In all of them the temperature was pushed up to 1000°C as fast as possible, then it was kept constant for several hours, then the oven was passively cooled down.

Fig. 5.
Fig. 5.

(a) Plot of the differences between the starting and ending positions of the pattern during the different temperature tests. (b) Plot of the cumulative pattern shift during the first five temperature cycles.

Fig. 6.
Fig. 6.

Sixth temperature cycle. In blue it is plotted the temperature as measured by the thermocouple, in green the pattern shift.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( 2 π Δ nL λ )
Δ n ( T ) Δ n ( T 0 ) + Δ n t T = T 0 Δ T
L ( T ) L ( T 0 ) ( 1 + α s Δ T )
I ( T ) I 1 + I 2 + 2 I 1 I 2 cos ( 2 π λ Δ n ( T 0 ) L ( T 0 ) + 2 π λ Δ n ( T 0 ) α s L ( T 0 ) Δ T +
+ 2 π λ L ( T 0 ) Δ n T T 0 Δ T + 2 π λ α s L ( T 0 ) Δ n T T 0 Δ T 2 )
I ( T ) I 1 + I 2 + 2 I 1 I 2 cos ( 2 π λ Δ n ( T 0 ) L ( T 0 ) + 2 π λ L ( T 0 ) Δ n T T 0 Δ T )
I I 1 + I 2 + 2 I 1 I 2 cos ( 2 πλ Λ + Δ ϕ )
Λ = λ 0 2 Δ n ( T 0 ) L ( T 0 )
Δ ϕ = 2 πL ( T 0 ) λ 0 Δ n T T = T 0 Δ T
Δ λ peak = Λ 2 π Δ ϕ = Λ λ 0 Δ n T T = T 0 L ( T 0 ) Δ T

Metrics