Abstract

A method to fabricate conjugated polymer waveguides with well defined edge facets is demonstrated. The utility of the approach is explored for application as end-fired ultrafast optical amplifiers based on poly(9,9’-dioctylfluorene-co-benzothiadiazole). An internal gain of 19 dB was achieved on a 760 µm long waveguide at 565 nm wavelength. This fabrication procedure may be applied to a wide range of conjugated polymers and organic light-emitting devices, providing an important step towards future applications of organic integrated photonics.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. (Washington, D.C.) 107, 1272–1295 (2007).
  2. D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “Amplification of optical pulse sequences at a high repetition rate in a polymer slab waveguide,” Appl. Phys. Lett. 91, 011105 (2007) and Appl, Phys. Lett. 92, 149902 (2008).
    [CrossRef]
  3. D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, “Microfabricated solid-state dye lasers based on a photodefinable polymer,” Appl. Opt. 44(23), 4965–4971 (2005).
    [CrossRef] [PubMed]
  4. M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
    [CrossRef]
  5. M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006).
    [CrossRef] [PubMed]
  6. J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
    [CrossRef] [PubMed]
  7. G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
    [CrossRef]
  8. R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4(2-3), 165–177 (2003).
    [CrossRef]
  9. M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
    [CrossRef]
  10. J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
    [CrossRef]
  11. T. L. Koch, L. C. Chiu, and A. Yariv, “Analysis and performance of a picosecond dye laser amplifier chain,” J. Appl. Phys. 53(9), 6047–6059 (1982).
    [CrossRef]

2009 (1)

2008 (1)

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

2007 (2)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. (Washington, D.C.) 107, 1272–1295 (2007).

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

2006 (1)

M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006).
[CrossRef] [PubMed]

2005 (2)

D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, “Microfabricated solid-state dye lasers based on a photodefinable polymer,” Appl. Opt. 44(23), 4965–4971 (2005).
[CrossRef] [PubMed]

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

2004 (1)

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

2003 (1)

R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4(2-3), 165–177 (2003).
[CrossRef]

1982 (1)

T. L. Koch, L. C. Chiu, and A. Yariv, “Analysis and performance of a picosecond dye laser amplifier chain,” J. Appl. Phys. 53(9), 6047–6059 (1982).
[CrossRef]

Amarasinghe, D.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “Amplification of optical pulse sequences at a high repetition rate in a polymer slab waveguide,” Appl. Phys. Lett. 91, 011105 (2007) and Appl, Phys. Lett. 92, 149902 (2008).
[CrossRef]

Balslev, S.

Bazzana, L.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Bradley, D. D.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Bradley, D. D. C.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4(2-3), 165–177 (2003).
[CrossRef]

Cabanillas-Gonzalez, J.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Chiu, L. C.

T. L. Koch, L. C. Chiu, and A. Yariv, “Analysis and performance of a picosecond dye laser amplifier chain,” J. Appl. Phys. 53(9), 6047–6059 (1982).
[CrossRef]

Clark, J.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Coleman, B.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Diemeer, M. B. J.

Driessen, A.

Geskus, D.

Goossens, M.

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Gregersen, M. M.

Heinrich, M. P.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

Heliotis, G.

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4(2-3), 165–177 (2003).
[CrossRef]

Henzi, P.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

Hou, Y. B.

R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4(2-3), 165–177 (2003).
[CrossRef]

Koch, T. L.

T. L. Koch, L. C. Chiu, and A. Yariv, “Analysis and performance of a picosecond dye laser amplifier chain,” J. Appl. Phys. 53(9), 6047–6059 (1982).
[CrossRef]

Kristensen, A.

Lanzani, G.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Lemmer, U.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

Lidzey, D. G.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Morgado, J.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Mozer, S.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

Muccini, M.

M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006).
[CrossRef] [PubMed]

Nilsson, D.

Nocivelli, A.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Penty, R. V.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Pollnau, M.

Pun, E. Y. B.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Punke, M.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

Rabus, D. G.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

Ramon, M.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Reilly, M. A.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Richardson, S.

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Ruseckas, A.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “Amplification of optical pulse sequences at a high repetition rate in a polymer slab waveguide,” Appl. Phys. Lett. 91, 011105 (2007) and Appl, Phys. Lett. 92, 149902 (2008).
[CrossRef]

Samuel, I. D. W.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “Amplification of optical pulse sequences at a high repetition rate in a polymer slab waveguide,” Appl. Phys. Lett. 91, 011105 (2007) and Appl, Phys. Lett. 92, 149902 (2008).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. (Washington, D.C.) 107, 1272–1295 (2007).

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Sengo, G.

Stroisch, M.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

Tsoi, W. C.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Turnbull, G. A.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “Amplification of optical pulse sequences at a high repetition rate in a polymer slab waveguide,” Appl. Phys. Lett. 91, 011105 (2007) and Appl, Phys. Lett. 92, 149902 (2008).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. (Washington, D.C.) 107, 1272–1295 (2007).

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Vasdekis, A. E.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “Amplification of optical pulse sequences at a high repetition rate in a polymer slab waveguide,” Appl. Phys. Lett. 91, 011105 (2007) and Appl, Phys. Lett. 92, 149902 (2008).
[CrossRef]

Virgili, T.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

White, I. H.

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Xia, R.

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4(2-3), 165–177 (2003).
[CrossRef]

Yang, J.

Yariv, A.

T. L. Koch, L. C. Chiu, and A. Yariv, “Analysis and performance of a picosecond dye laser amplifier chain,” J. Appl. Phys. 53(9), 6047–6059 (1982).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005).
[CrossRef]

Appl. Phys. Lett. Appl, Phys. Lett. (1)

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “Amplification of optical pulse sequences at a high repetition rate in a polymer slab waveguide,” Appl. Phys. Lett. 91, 011105 (2007) and Appl, Phys. Lett. 92, 149902 (2008).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. (Washington, D.C.) 107, 1272–1295 (2007).

IEEE Photon. Technol. Lett. (1)

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007).
[CrossRef]

J. Appl. Phys. (1)

T. L. Koch, L. C. Chiu, and A. Yariv, “Analysis and performance of a picosecond dye laser amplifier chain,” J. Appl. Phys. 53(9), 6047–6059 (1982).
[CrossRef]

J. Nanophoton (1)

J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008).
[CrossRef]

Nat. Mater. (1)

M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Org. Electron. (1)

R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4(2-3), 165–177 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a), (b) diagrams of the finished sample in ridge and completely encapsulated configuration, respectively. (c) Electron micrograph showing the top surface and cleaved edge of a rib waveguide. The arrows indicate the composition of waveguide. (d) Electron micrograph showing the top surface and cleaved edge of an F8BT/ SiO2/Si waveguide, showing the typical ragged edge of the conjugated polymer film. The images (c) and (d) are recorded from a 45 degree angle above the samples.

Fig. 2
Fig. 2

Absorption (red solid line) and steady-state PL (dashed blue line) spectra of a pristine F8BT film spin-coated on SU8. The solid blue line shows the PL spectrum of the processed SU8/F8BT/SU8/glass structure. The dotted green line shows the ASE spectrum, measured using a ridge sample, configured as in Fig. 1(a). The arrows indicate the pump and probe wavelengths in the ultrafast amplification experiment.

Fig. 3
Fig. 3

ASE characteristics of three F8BT waveguides. Red squares are for a waveguide configured as Fig. 1(a), blue circles for a waveguide configured as Fig. 1(b), black triangles are for an unpatterned F8BT film on SU8. (a) Edge emission intensity as a function of pump energy density. (b) Dependence of ASE intensity on the distance between the pump beam and waveguide edge. Both data sets are offset for clarity.

Fig. 4
Fig. 4

Schematic of the time-resolved pump-probe experimental setup. OB=objective, ND=neutral density. The pump path is indicated by black lines, and the probe and total signal path by light grey lines.

Fig. 5
Fig. 5

(a) Typical time traces of the probe signal (dotted red) only, PL background (dashed green), and the total amplified output (solid blue) from a 760 µm long sample as in Fig. 1(a). (b) Corresponding amplified probe signal (with PL background subtracted from the total output) and probe signal.

Fig. 6
Fig. 6

(a) Gain as a function of pump energy density. Data indicated by red squares are obtain from probe energy 8 pJ, blue squares are from probe energy 29 pJ.(b) Gain as a function of probe signal energy at pump energy density 63 µJ/cm2. Black curve is the theoretical fit to Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G ( dB ) = 10 log ( P o n P P L P o f f ) = 10 log ( G )
G = n = 1 100 1 S n ln [ 1 + g 0 ( exp ( s n ) 1 ) ]

Metrics