Abstract

The temperature-dependent Goos-Hänchen shift (GHS) for an electromagnetic wave reflected from a metal/dielectric composite material is investigated. With the stationary-phase method, we theoretically show that the effect of the temperature on GHS is significant near the Brewster angle for the dielectric composites and at the grazing angle for the metallic composites. For dielectric composites, the lateral shift can be negative as well as positive. And GHS may become much negative, much positive, and nonmonotonic variation with increasing the temperature under different conditions. Moreover, through the suitable adjustment of the temperature, one may realize the reversal of the GHS. To support the above results, numerical simulations for Gaussian incident beams based on the momentum method and COMSOL Multiphysics software are provided, and reasonable agreement between the theoretical results and numerical simulations is found.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hänchen, “Ein neuer und fundamental Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 ( 1947).
    [CrossRef]
  2. F. Goos and H. Hänchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 5, 251–252 ( 1949).
    [CrossRef]
  3. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Stranles,” Ann. Phys. 2, 87–102 ( 1948).
    [CrossRef]
  4. H. K. V. Lotsch, “Beam displacement at total reflection: the Goos-Hänchen effect,” Optik 32, 116–137 ( 1970).
  5. T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841–2843 ( 2000).
    [CrossRef]
  6. C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt. 46, 5347–5351 ( 2007).
    [CrossRef] [PubMed]
  7. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 ( 1982).
    [CrossRef]
  8. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 ( 2002).
    [CrossRef]
  9. H. M. Lai, S. W. Chan, and W. H. Wong, “Nonspecular effects on reflection from absorbing media at and around Brewster’s dip,” J. Opt. Soc. Am. A 23, 3208–3216 ( 2006).
    [CrossRef]
  10. L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, “Negative and positive lateral shift of a light beam reflected from a grounded slab,” Opt. Lett. 31, 1124–1126 ( 2006).
    [CrossRef] [PubMed]
  11. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 ( 2003).
    [CrossRef] [PubMed]
  12. Y. Yan, X. Chen, and C. F. Li, “Large and negative lateral displacement in an active dielectric slab configuration,” Phys. Lett. A 361, 178–181 ( 2007).
    [CrossRef]
  13. H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, “Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hänchen shifts,” Progress In Electromagnetics Research 82, 137–150 ( 2008).
    [CrossRef]
  14. P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 276, 206–208 ( 2007).
    [CrossRef]
  15. M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 ( 2007).
    [CrossRef] [PubMed]
  16. D. J. Hoppe and Y. Rahmat-Samii, “Gaussian Beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 ( 1992).
  17. R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian Beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 ( 1996).
  18. F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 ( 2004).
    [CrossRef]
  19. W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Progress In Electromagnetics Research 104, 255–268 ( 2009).
    [CrossRef]
  20. E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett. 70, 2281–2284 ( 1993).
    [CrossRef] [PubMed]
  21. T. Tamir and H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am 61, 1397–1413 ( 1971).
    [CrossRef]
  22. D. Felbacq, A. Moreau, and R. Smaali, “Goos-Hänchen effect in the gaps of photonic crystals,” Opt. Lett. 28, 1633–1635 ( 2003).
    [CrossRef] [PubMed]
  23. P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 ( 2002).
    [CrossRef]
  24. A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23, 71–75 ( 2003).
    [CrossRef]
  25. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 ( 2003).
    [CrossRef]
  26. N. H. Shen, J. Chen, Q. Y. Wu, T. Lan, Y. X. Fan, and H. T. Wang, “Large lateral shift near pseudo-Brewster angle reflection from a weakly absorbing double negative medium,” Opt. Express 14, 10574–10579 ( 2006).
    [CrossRef] [PubMed]
  27. P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75. 045802 ( 2007).
    [CrossRef]
  28. L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a conherent driving field,” Phys. Rev. A 77, 023811 ( 2008).
    [CrossRef]
  29. Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
    [CrossRef]
  30. H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 ( 2000).
    [CrossRef]
  31. L. H. Shi, L. Gao, S. L. He, and B. W. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76, 045116 ( 2007).
    [CrossRef]
  32. J. B. Götte, A. Aiello, and J.P. Woerdman, “Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics,” Opt. Express 16, 3961–3969 ( 2008).
    [CrossRef] [PubMed]
  33. L. Gao and Z.Y. Li, “Effect of temperature on nonlinear optical properties of composite media with shape distribution,” J. Appl. Phys. 91, 2045–2050 ( 2002).
    [CrossRef]
  34. L. H. Shi and L. Gao, “Subwavelength imaging from a multylayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77, 195121 ( 2008).
    [CrossRef]
  35. C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 ( 2004).
    [CrossRef]
  36. X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 ( 2006).
    [CrossRef]
  37. C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 ( 2007).
    [CrossRef]
  38. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439.
    [PubMed]

2009 (1)

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Progress In Electromagnetics Research 104, 255–268 ( 2009).
[CrossRef]

2008 (5)

H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, “Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hänchen shifts,” Progress In Electromagnetics Research 82, 137–150 ( 2008).
[CrossRef]

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a conherent driving field,” Phys. Rev. A 77, 023811 ( 2008).
[CrossRef]

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
[CrossRef]

L. H. Shi and L. Gao, “Subwavelength imaging from a multylayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77, 195121 ( 2008).
[CrossRef]

J. B. Götte, A. Aiello, and J.P. Woerdman, “Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics,” Opt. Express 16, 3961–3969 ( 2008).
[CrossRef] [PubMed]

2007 (7)

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75. 045802 ( 2007).
[CrossRef]

L. H. Shi, L. Gao, S. L. He, and B. W. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76, 045116 ( 2007).
[CrossRef]

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 ( 2007).
[CrossRef]

C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt. 46, 5347–5351 ( 2007).
[CrossRef] [PubMed]

M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 ( 2007).
[CrossRef] [PubMed]

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 276, 206–208 ( 2007).
[CrossRef]

Y. Yan, X. Chen, and C. F. Li, “Large and negative lateral displacement in an active dielectric slab configuration,” Phys. Lett. A 361, 178–181 ( 2007).
[CrossRef]

2006 (4)

2004 (2)

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 ( 2004).
[CrossRef]

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 ( 2004).
[CrossRef]

2003 (4)

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23, 71–75 ( 2003).
[CrossRef]

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 ( 2003).
[CrossRef]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 ( 2003).
[CrossRef] [PubMed]

D. Felbacq, A. Moreau, and R. Smaali, “Goos-Hänchen effect in the gaps of photonic crystals,” Opt. Lett. 28, 1633–1635 ( 2003).
[CrossRef] [PubMed]

2002 (3)

H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680–682 ( 2002).
[CrossRef]

L. Gao and Z.Y. Li, “Effect of temperature on nonlinear optical properties of composite media with shape distribution,” J. Appl. Phys. 91, 2045–2050 ( 2002).
[CrossRef]

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 ( 2002).
[CrossRef]

2000 (2)

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841–2843 ( 2000).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 ( 2000).
[CrossRef]

1996 (1)

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian Beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 ( 1996).

1993 (1)

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett. 70, 2281–2284 ( 1993).
[CrossRef] [PubMed]

1992 (1)

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian Beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 ( 1992).

1982 (1)

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 ( 1982).
[CrossRef]

1971 (1)

T. Tamir and H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am 61, 1397–1413 ( 1971).
[CrossRef]

1970 (1)

H. K. V. Lotsch, “Beam displacement at total reflection: the Goos-Hänchen effect,” Optik 32, 116–137 ( 1970).

1949 (1)

F. Goos and H. Hänchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 5, 251–252 ( 1949).
[CrossRef]

1948 (1)

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Stranles,” Ann. Phys. 2, 87–102 ( 1948).
[CrossRef]

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamental Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 ( 1947).
[CrossRef]

’t Hooft, G. W.

Aiello, A.

Artmann, K.

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Stranles,” Ann. Phys. 2, 87–102 ( 1948).
[CrossRef]

Berman, P. R.

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 ( 2002).
[CrossRef]

Bertoni, H. L.

T. Tamir and H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am 61, 1397–1413 ( 1971).
[CrossRef]

Bonomo, N. E.

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian Beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 ( 1996).

Cao, Z. Q.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
[CrossRef]

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 ( 2006).
[CrossRef]

Chan, S. W.

Chen, C. W.

Chen, H.

Chen, J.

Chen, X.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75. 045802 ( 2007).
[CrossRef]

Y. Yan, X. Chen, and C. F. Li, “Large and negative lateral displacement in an active dielectric slab configuration,” Phys. Lett. A 361, 178–181 ( 2007).
[CrossRef]

Chen, Y. Y.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75. 045802 ( 2007).
[CrossRef]

Chiang, H. P.

C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt. 46, 5347–5351 ( 2007).
[CrossRef] [PubMed]

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 276, 206–208 ( 2007).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 ( 2000).
[CrossRef]

Depine, R. A.

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian Beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 ( 1996).

Dong, W. T.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Progress In Electromagnetics Research 104, 255–268 ( 2009).
[CrossRef]

Eliel, E. R.

Fan, Y.

H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, “Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hänchen shifts,” Progress In Electromagnetics Research 82, 137–150 ( 2008).
[CrossRef]

Fan, Y. X.

Felbacq, D.

Gao, L.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Progress In Electromagnetics Research 104, 255–268 ( 2009).
[CrossRef]

L. H. Shi and L. Gao, “Subwavelength imaging from a multylayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77, 195121 ( 2008).
[CrossRef]

L. H. Shi, L. Gao, S. L. He, and B. W. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76, 045116 ( 2007).
[CrossRef]

L. Gao and Z.Y. Li, “Effect of temperature on nonlinear optical properties of composite media with shape distribution,” J. Appl. Phys. 91, 2045–2050 ( 2002).
[CrossRef]

Giles, C. L.

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 ( 1982).
[CrossRef]

Goos, F.

F. Goos and H. Hänchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 5, 251–252 ( 1949).
[CrossRef]

F. Goos and H. Hänchen, “Ein neuer und fundamental Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 ( 1947).
[CrossRef]

Götte, J. B.

Hänchen, H.

F. Goos and H. Hänchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 5, 251–252 ( 1949).
[CrossRef]

F. Goos and H. Hänchen, “Ein neuer und fundamental Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 ( 1947).
[CrossRef]

Hao, J.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
[CrossRef]

He, S. L.

L. H. Shi, L. Gao, S. L. He, and B. W. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76, 045116 ( 2007).
[CrossRef]

Hoppe, D. J.

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian Beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 ( 1992).

Hou, P.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75. 045802 ( 2007).
[CrossRef]

Huang, H.

H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, “Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hänchen shifts,” Progress In Electromagnetics Research 82, 137–150 ( 2008).
[CrossRef]

Ikram, M.

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a conherent driving field,” Phys. Rev. A 77, 023811 ( 2008).
[CrossRef]

Kivshar, Y. S.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 ( 2003).
[CrossRef]

Kong, F. M.

H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, “Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hänchen shifts,” Progress In Electromagnetics Research 82, 137–150 ( 2008).
[CrossRef]

Kong, J. A.

H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, “Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hänchen shifts,” Progress In Electromagnetics Research 82, 137–150 ( 2008).
[CrossRef]

Lai, H. M.

Lakhtakia, A.

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 ( 2004).
[CrossRef]

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23, 71–75 ( 2003).
[CrossRef]

Lan, T.

Leung, P. T.

C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt. 46, 5347–5351 ( 2007).
[CrossRef] [PubMed]

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 276, 206–208 ( 2007).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 ( 2000).
[CrossRef]

Li, B. W.

L. H. Shi, L. Gao, S. L. He, and B. W. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76, 045116 ( 2007).
[CrossRef]

Li, C. F.

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 ( 2007).
[CrossRef]

Y. Yan, X. Chen, and C. F. Li, “Large and negative lateral displacement in an active dielectric slab configuration,” Phys. Lett. A 361, 178–181 ( 2007).
[CrossRef]

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 ( 2004).
[CrossRef]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 ( 2003).
[CrossRef] [PubMed]

Li, H. G.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
[CrossRef]

Li, Z.Y.

L. Gao and Z.Y. Li, “Effect of temperature on nonlinear optical properties of composite media with shape distribution,” J. Appl. Phys. 91, 2045–2050 ( 2002).
[CrossRef]

Liao, L. S.

Lin, W. C.

Lin, Z. H.

Liu, N. H.

Liu, X. B.

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 ( 2006).
[CrossRef]

Liu, X. M.

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 ( 2006).
[CrossRef]

Lotsch, H. K. V.

H. K. V. Lotsch, “Beam displacement at total reflection: the Goos-Hänchen effect,” Optik 32, 116–137 ( 1970).

Marseille, A.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett. 70, 2281–2284 ( 1993).
[CrossRef] [PubMed]

Merano, M.

Moreau, A.

Pfleghaar, E.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett. 70, 2281–2284 ( 1993).
[CrossRef] [PubMed]

Qiu, C. W.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Progress In Electromagnetics Research 104, 255–268 ( 2009).
[CrossRef]

Rahmat-Samii, Y.

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian Beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 ( 1992).

Sakata, T.

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841–2843 ( 2000).
[CrossRef]

Shadrivov, I. V.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 ( 2003).
[CrossRef]

Shen, N. H.

Shen, Q. S.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
[CrossRef]

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 ( 2006).
[CrossRef]

Shi, J. L.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75. 045802 ( 2007).
[CrossRef]

Shi, L. H.

L. H. Shi and L. Gao, “Subwavelength imaging from a multylayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77, 195121 ( 2008).
[CrossRef]

L. H. Shi, L. Gao, S. L. He, and B. W. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76, 045116 ( 2007).
[CrossRef]

Shimokawa, F.

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841–2843 ( 2000).
[CrossRef]

Sijercic, E.

Smaali, R.

Tamir, T.

T. Tamir and H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am 61, 1397–1413 ( 1971).
[CrossRef]

Togo, H.

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841–2843 ( 2000).
[CrossRef]

Tse, W. S.

C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt. 46, 5347–5351 ( 2007).
[CrossRef] [PubMed]

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 ( 2000).
[CrossRef]

van Exter, M. P.

Wang, F.

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 ( 2004).
[CrossRef]

Wang, H. T.

Wang, L. G.

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a conherent driving field,” Phys. Rev. A 77, 023811 ( 2008).
[CrossRef]

L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, “Negative and positive lateral shift of a light beam reflected from a grounded slab,” Opt. Lett. 31, 1124–1126 ( 2006).
[CrossRef] [PubMed]

Wang, Q.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75. 045802 ( 2007).
[CrossRef]

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 ( 2004).
[CrossRef]

Wang, Y.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
[CrossRef]

Weis, A.

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett. 70, 2281–2284 ( 1993).
[CrossRef] [PubMed]

Wild, W. J.

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 ( 1982).
[CrossRef]

Woerdman, J. P.

Woerdman, J.P.

Wong, W. H.

Wu, B. I.

H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, “Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hänchen shifts,” Progress In Electromagnetics Research 82, 137–150 ( 2008).
[CrossRef]

Wu, Q. Y.

Yan, Y.

Y. Yan, X. Chen, and C. F. Li, “Large and negative lateral displacement in an active dielectric slab configuration,” Phys. Lett. A 361, 178–181 ( 2007).
[CrossRef]

Yu, T. Y.

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
[CrossRef]

Zharov, A. A.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 ( 2003).
[CrossRef]

Zhu, P. F.

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 ( 2006).
[CrossRef]

Zhu, S. Y.

Zubairy, M. S.

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a conherent driving field,” Phys. Rev. A 77, 023811 ( 2008).
[CrossRef]

Ann. Phys. (3)

F. Goos and H. Hänchen, “Ein neuer und fundamental Versuch zur Totalreflexion,” Ann. Phys. 1, 333–346 ( 1947).
[CrossRef]

F. Goos and H. Hänchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys. 5, 251–252 ( 1949).
[CrossRef]

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Stranles,” Ann. Phys. 2, 87–102 ( 1948).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 ( 2003).
[CrossRef]

Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93, 091103 ( 2008).
[CrossRef]

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841–2843 ( 2000).
[CrossRef]

Electromagnetics (1)

A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23, 71–75 ( 2003).
[CrossRef]

J. Appl. Phys. (1)

L. Gao and Z.Y. Li, “Effect of temperature on nonlinear optical properties of composite media with shape distribution,” J. Appl. Phys. 91, 2045–2050 ( 2002).
[CrossRef]

J. Electromagn. Waves Appl. (1)

D. J. Hoppe and Y. Rahmat-Samii, “Gaussian Beam reflection at a dielectric-chiral interface,” J. Electromagn. Waves Appl. 6, 603–624 ( 1992).

J. Opt. Soc. Am (1)

T. Tamir and H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am 61, 1397–1413 ( 1971).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 ( 2000).
[CrossRef]

Opt. Commun. (2)

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 276, 206–208 ( 2007).
[CrossRef]

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 ( 2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Optik (2)

R. A. Depine and N. E. Bonomo, “Goos-Hänchen lateral shift for Gaussian Beams reflected at achiral-chiral interfaces,” Optik 103, 37–41 ( 1996).

H. K. V. Lotsch, “Beam displacement at total reflection: the Goos-Hänchen effect,” Optik 32, 116–137 ( 1970).

Phys. Lett. A (1)

Y. Yan, X. Chen, and C. F. Li, “Large and negative lateral displacement in an active dielectric slab configuration,” Phys. Lett. A 361, 178–181 ( 2007).
[CrossRef]

Phys. Rev. A (4)

C. F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76, 013811 ( 2007).
[CrossRef]

W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A 25, 2099–2101 ( 1982).
[CrossRef]

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75. 045802 ( 2007).
[CrossRef]

L. G. Wang, M. Ikram, and M. S. Zubairy, “Control of the Goos-Hänchen shift of a light beam via a conherent driving field,” Phys. Rev. A 77, 023811 ( 2008).
[CrossRef]

Phys. Rev. B (2)

L. H. Shi, L. Gao, S. L. He, and B. W. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76, 045116 ( 2007).
[CrossRef]

L. H. Shi and L. Gao, “Subwavelength imaging from a multylayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77, 195121 ( 2008).
[CrossRef]

Phys. Rev. E (3)

C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E 69, 055601 ( 2004).
[CrossRef]

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 ( 2006).
[CrossRef]

P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 ( 2002).
[CrossRef]

Phys. Rev. Lett. (2)

E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift,” Phys. Rev. Lett. 70, 2281–2284 ( 1993).
[CrossRef] [PubMed]

C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett. 91, 133903–133906 ( 2003).
[CrossRef] [PubMed]

Progress In Electromagnetics Research (2)

H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, “Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-Hänchen shifts,” Progress In Electromagnetics Research 82, 137–150 ( 2008).
[CrossRef]

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hänchen shift at the surface of chiral negative refractive media,” Progress In Electromagnetics Research 104, 255–268 ( 2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Geometry indicating the GHS, defined as the light beam is incident from air (medium 1) onto a metal-dielectric composite (medium 2) surface.

Fig. 2.
Fig. 2.

The reflectivity of the composite is plotted versus the incident angle θ for different temperatures. (a) f=0.1 and λ=295nm; (b) f=0.7 and λ=248nm and (c) f=0.7 and λ=413nm. The inserts of (a) and (b) show the reflectivity near the Brewster angle.

Fig. 3.
Fig. 3.

The GHS (Dp) of the material as a function of incident angle θ for different temperature: (a) f=0.1 and λ=295nm, (b) f=0.7 and λ=248nm, and (c) f=0.7 and λ=413nm.

Fig. 4.
Fig. 4.

The GHS (Dp) plotted versus temperature under different incident angle: (a) f=0.1 and λ=295nm, the curve for θ=89° is 10-fold magnified; (b) f=0.3 and λ=295nm and (c) f=0.7 and λ=248nm.

Fig. 5.
Fig. 5.

The comparison for the results given by the Artmann’s formula (solid curve) and the Gaussian-shaped beams with w 0=5λ for f=0.1,λ=295nm [(a) and (b)]; f=0.7,λ=248nm [(c) and (d)].

Fig. 6.
Fig. 6.

COMSOL Multiphysics simulation of the GH shifts for two Gaussian-shaped beams: (a) λ=413nm and θ=50° (εe =-1.62+1.74i); (b) λ=248nm, and θ=54° (εe =0.563+0.148i)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε m ( T ) = 1 ω p 2 ( T ) ω [ ω + c ( T ) ] ,
ω p ( T ) = ω p ( T 0 ) [ 1 + γ ( T T 0 ) ] 1 2 ,
ω c ( T ) = ω p 2 ( T ) ε 0 σ ( 0 ) [ 1 10 + ( T T θ ) 5 0 T θ T y 4 dy e y 1 ] 0 1 y 5 ( e y 1 ) ( 1 e −y ) dy + 1 12 π 3 Γ Δ ħ E F [ ( k B T ) 2 + ( ħ ω 2 π ) 2 ] ,
ε d = ( 1.36975 + 35.821 10 λ 1492.5 ) 2
f ε m ( T ) ε e ( T ) ε m ( T ) + 2 ε e ( T ) + ( 1 f ) ε d ε e ( T ) ε d + 2 ε e ( T ) = 0 ,
ε e ( T ) = 1 4 { ε m ( 3 f 1 ) + ε d ( 2 3 f ) ± 8 ε d ε m + [ ε m ( 3 f 1 ) + ε d ( 2 3 f ) ] 2 } .
R ( θ ) = ε e cos θ ε 1 ( ε e ε 1 sin 2 θ ) ε e cos θ + ε 1 ( ε e ε 1 sin 2 θ ) ,
δ ( θ ) = Im { ln [ ε e cos θ ε 1 ( ε e ε 1 sin 2 θ ) ε e cos θ + ε 1 ( ε e ε 1 sin 2 θ ) ] } .
D = 1 k d δ ( θ ) d θ ,
E in ( x , y ) x = 0 = 1 2 π A ( k y ) exp ( ik y y ) dk y .
E r ( x , y ) x = 0 = 1 2 π R ( k y ) exp ( ik y y ) dk y .

Metrics