Abstract

Single transverse mode oscillation is realized in a conventional HeNe laser outside the stability region of the optical resonator. Depending on the mirror separation different spatial modes can be generated. The mode volume of these modes is laterally limited by the diameter of the discharge capillary rather than by the beam waist of a stable Gaussian mode. Numerical solution of the Maxwell equations with appropriate boundary conditions shows good agreement with the observations. Such modes could potentially facilitate single transverse mode operation of waveguide lasers and fiber lasers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik and T. Li, “Laser Beams and Resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [CrossRef] [PubMed]
  2. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  3. R. Gerlach, D. Wei, and N. M. Amer, “Coupling Efficiency of Waveguide Laser Resonators Formed by Flat Mirrors: Analysis and Experiments,” IEEE J. Quantum Electron. 20(8), 948–963 (1984).
    [CrossRef]
  4. J. Henningsen, M. Hammerich, and A. Olafsson, “Mode Structure of Hollow Dielectric Waveguide lasers,” Appl. Phys. B 51(4), 272–284 (1990).
    [CrossRef]
  5. D. A. Eastham, Atomic Physics of Lasers (Taylor & Francis, 1986).

1990 (1)

J. Henningsen, M. Hammerich, and A. Olafsson, “Mode Structure of Hollow Dielectric Waveguide lasers,” Appl. Phys. B 51(4), 272–284 (1990).
[CrossRef]

1984 (1)

R. Gerlach, D. Wei, and N. M. Amer, “Coupling Efficiency of Waveguide Laser Resonators Formed by Flat Mirrors: Analysis and Experiments,” IEEE J. Quantum Electron. 20(8), 948–963 (1984).
[CrossRef]

1966 (1)

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Amer, N. M.

R. Gerlach, D. Wei, and N. M. Amer, “Coupling Efficiency of Waveguide Laser Resonators Formed by Flat Mirrors: Analysis and Experiments,” IEEE J. Quantum Electron. 20(8), 948–963 (1984).
[CrossRef]

Gerlach, R.

R. Gerlach, D. Wei, and N. M. Amer, “Coupling Efficiency of Waveguide Laser Resonators Formed by Flat Mirrors: Analysis and Experiments,” IEEE J. Quantum Electron. 20(8), 948–963 (1984).
[CrossRef]

Hammerich, M.

J. Henningsen, M. Hammerich, and A. Olafsson, “Mode Structure of Hollow Dielectric Waveguide lasers,” Appl. Phys. B 51(4), 272–284 (1990).
[CrossRef]

Henningsen, J.

J. Henningsen, M. Hammerich, and A. Olafsson, “Mode Structure of Hollow Dielectric Waveguide lasers,” Appl. Phys. B 51(4), 272–284 (1990).
[CrossRef]

Kogelnik, H.

Li, T.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Olafsson, A.

J. Henningsen, M. Hammerich, and A. Olafsson, “Mode Structure of Hollow Dielectric Waveguide lasers,” Appl. Phys. B 51(4), 272–284 (1990).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Wei, D.

R. Gerlach, D. Wei, and N. M. Amer, “Coupling Efficiency of Waveguide Laser Resonators Formed by Flat Mirrors: Analysis and Experiments,” IEEE J. Quantum Electron. 20(8), 948–963 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Henningsen, M. Hammerich, and A. Olafsson, “Mode Structure of Hollow Dielectric Waveguide lasers,” Appl. Phys. B 51(4), 272–284 (1990).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

IEEE J. Quantum Electron. (1)

R. Gerlach, D. Wei, and N. M. Amer, “Coupling Efficiency of Waveguide Laser Resonators Formed by Flat Mirrors: Analysis and Experiments,” IEEE J. Quantum Electron. 20(8), 948–963 (1984).
[CrossRef]

Other (1)

D. A. Eastham, Atomic Physics of Lasers (Taylor & Francis, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laser output as a function of resonator length d

Fig. 2
Fig. 2

Mode patterns observed at resonator lengths d = 0.440, 0.450, 0.457, 0.462, and 0.467 m respectively

Fig. 3
Fig. 3

Unfolded resonator with period 2d

Fig. 4
Fig. 4

Loss for the two lowest-loss modes with maximum at the center (blue and green) and with zero at the center (red and cyan) as a function of the distance between the external mirror and the capillary.

Fig. 5
Fig. 5

Measured beam profile through the centre of the beam (middle column) and calculated beam profiles (right column). From top d = 0.440, 0.450, 0.457, 0.462, and 0.467 m.

Fig. 6
Fig. 6

Equivalent Gaussian e−2 radius of the far-field observed at d = 0.457 m (blue circles). Solid lines are calculated beam radii in the stable regions (green and red), and in the unstable region (blue).

Fig. 7
Fig. 7

Calculated output patterns from left for resonator length 0.440, 0.450, 0.457, 0.462, and 0.467 m for distances 0 to 6 m from the output coupler. Upper row shows the fundamental mode and lower row the first mode with one azimuthal nodal plane. Lines below outline the 2.17 mm diameter of the discharge capillary.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

0 g 1 g 2 1
g 1 1 d / R 1           g 2 1 d / R 2
γ i = 1 | A i | 2

Metrics