Abstract

A major difficulty arising from whole-body optoacoustic imaging is the long acquisition times associated with recording signals from multiple spatial projections. The acquired signals are also generally weak and the signal-to-noise-ratio is low, problems often solved by signal averaging, which complicates acquisition and increases acquisition times to an extent that makes many in vivo applications challenging or even impossible. Herein we present a fast acquisition multispectral optoacoustic tomography (MSOT) scanner for whole-body visualization of molecular markers in small animals. Multi-wavelength illumination offers the possibility to resolve exogenously administered fluorescent probes, biomarkers, and other intrinsic and exogenous chromophores. The system performance is determined in phantom experiments involving molecular probes and validated by imaging of small animals of various scales.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
    [CrossRef]
  2. D. Razansky, C. Vinegoni, and V. Ntziachristos, “Multispectral photoacoustic imaging of fluorochromes in small animals,” Opt. Lett. 32(19), 2891–2893 (2007).
    [CrossRef] [PubMed]
  3. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
    [CrossRef]
  4. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
    [CrossRef] [PubMed]
  5. X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  6. A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
    [CrossRef]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  8. Z. Yuan and H. B. Jiang, “Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography,” Opt. Lett. 34(11), 1714–1716 (2009).
    [CrossRef] [PubMed]
  9. D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys. 36(3), 939–945 (2009).
    [CrossRef] [PubMed]
  10. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [CrossRef] [PubMed]
  11. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  12. R. Yuste, “Fluorescence microscopy today,” Nat. Methods 2(12), 902–904 (2005).
    [CrossRef] [PubMed]
  13. American National Standards for the Safe Use of Lasers, ANSI Z136.1, American Laser Institute (2000).
  14. G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49(7), 1329–1338 (2004).
    [CrossRef] [PubMed]
  15. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
    [CrossRef] [PubMed]
  16. B. A. J. Angelsen, Ultrasound imaging - Waves, Signals, and Signal Processing (Emantec, Trondheim, 2000).
  17. D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
    [CrossRef] [PubMed]
  18. T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
    [CrossRef]
  19. Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
    [CrossRef]
  20. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative optoacoustic tomography using sparse signal representation,” IEEE Trans. Med. Imag., DOI: 10.1109/TMI.2009.2027116 (2009).
    [CrossRef]
  21. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007).
    [CrossRef] [PubMed]
  22. D. Razansky, C. Vinegoni, and V. Ntziachristos, “Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography,” Phys. Med. Biol. 54(9), 2769–2777 (2009).
    [CrossRef] [PubMed]
  23. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
    [CrossRef] [PubMed]
  24. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
    [CrossRef] [PubMed]
  25. K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D Appl. Phys. 38(15), 2645–2653 (2005).
    [CrossRef]
  26. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
    [CrossRef] [PubMed]
  27. R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging 2(2), 113–123 (2003).
    [CrossRef] [PubMed]
  28. R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime Photoacoustic Microscopy of Murine Cardiovascular Dynamics,” Opt. Express 16(22), 18551–18556 (2008).
    [CrossRef] [PubMed]

2009 (6)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys. 36(3), 939–945 (2009).
[CrossRef] [PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
[CrossRef]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography,” Phys. Med. Biol. 54(9), 2769–2777 (2009).
[CrossRef] [PubMed]

Z. Yuan and H. B. Jiang, “Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography,” Opt. Lett. 34(11), 1714–1716 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (5)

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Multispectral photoacoustic imaging of fluorochromes in small animals,” Opt. Lett. 32(19), 2891–2893 (2007).
[CrossRef] [PubMed]

2006 (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

2005 (3)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

R. Yuste, “Fluorescence microscopy today,” Nat. Methods 2(12), 902–904 (2005).
[CrossRef] [PubMed]

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D Appl. Phys. 38(15), 2645–2653 (2005).
[CrossRef]

2004 (1)

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

2003 (3)

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging 2(2), 113–123 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

1999 (1)

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

1995 (1)

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Aguirre, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Andreev, V. A.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

Appledorn, C. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Baeten, J.

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys. 36(3), 939–945 (2009).
[CrossRef] [PubMed]

Beard, P.

Beard, P. C.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Bitton, R.

Castillo, D.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Deliolanis, N.

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Englmeier, K. H.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
[CrossRef]

Esenaliev, R. O.

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D Appl. Phys. 38(15), 2645–2653 (2005).
[CrossRef]

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

Fang, Y. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Fleming, R. D.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

Gamelin, J.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Gatalica, Z.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Huang, F.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Hyde, D.

Jetzfellner, T.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
[CrossRef]

Jiang, H. B.

Z. Yuan and H. B. Jiang, “Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography,” Opt. Lett. 34(11), 1714–1716 (2009).
[CrossRef] [PubMed]

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

Karabutov, A. A.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

Kiser, W. L.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging 2(2), 113–123 (2003).
[CrossRef] [PubMed]

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging 2(2), 113–123 (2003).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging 2(2), 113–123 (2003).
[CrossRef] [PubMed]

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Ku, G.

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Larin, K. V.

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D Appl. Phys. 38(15), 2645–2653 (2005).
[CrossRef]

Larina, I. V.

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D Appl. Phys. 38(15), 2645–2653 (2005).
[CrossRef]

Lasser, T.

Laufer, J.

Laufer, J. G.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Liu, P.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Maslov, K.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Maurudis, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Miller, K. D.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging 2(2), 113–123 (2003).
[CrossRef] [PubMed]

Ntziachristos, V.

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography,” Phys. Med. Biol. 54(9), 2769–2777 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
[CrossRef]

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys. 36(3), 939–945 (2009).
[CrossRef] [PubMed]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[CrossRef] [PubMed]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Multispectral photoacoustic imaging of fluorochromes in small animals,” Opt. Lett. 32(19), 2891–2893 (2007).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

Oraevsky, A. A.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

Pang, Y. J.

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Pedley, R. B.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007).
[CrossRef] [PubMed]

Pitsouli, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007).
[CrossRef] [PubMed]

Razansky, D.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
[CrossRef]

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys. 36(3), 939–945 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography,” Phys. Med. Biol. 54(9), 2769–2777 (2009).
[CrossRef] [PubMed]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Multispectral photoacoustic imaging of fluorochromes in small animals,” Opt. Lett. 32(19), 2891–2893 (2007).
[CrossRef] [PubMed]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007).
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging 2(2), 113–123 (2003).
[CrossRef] [PubMed]

Ripoll, J.

Rosenthal, A.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
[CrossRef]

Schulz, R.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
[CrossRef]

Shung, K. K.

Singh, H.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Song, L.

Soubret, A.

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography,” Phys. Med. Biol. 54(9), 2769–2777 (2009).
[CrossRef] [PubMed]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Multispectral photoacoustic imaging of fluorochromes in small animals,” Opt. Lett. 32(19), 2891–2893 (2007).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007).
[CrossRef] [PubMed]

Wang, L. H. V.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Wang, L. V.

R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime Photoacoustic Microscopy of Murine Cardiovascular Dynamics,” Opt. Express 16(22), 18551–18556 (2008).
[CrossRef] [PubMed]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, X. D.

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Weissleder, R.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

Xie, X. Y.

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Yuan, Z.

Z. Yuan and H. B. Jiang, “Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography,” Opt. Lett. 34(11), 1714–1716 (2009).
[CrossRef] [PubMed]

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

Yuste, R.

R. Yuste, “Fluorescence microscopy today,” Nat. Methods 2(12), 902–904 (2005).
[CrossRef] [PubMed]

Zemp, R. J.

Zhang, E.

Zhang, E. Z.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Zhu, Q.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95(1), 013703 (2009).
[CrossRef]

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

J. Biomed. Opt. (1)

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D Appl. Phys. 38(15), 2645–2653 (2005).
[CrossRef]

Med. Phys. (3)

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34(11), 4293–4301 (2007).
[CrossRef] [PubMed]

D. Razansky, J. Baeten, and V. Ntziachristos, “Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT),” Med. Phys. 36(3), 939–945 (2009).
[CrossRef] [PubMed]

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[CrossRef] [PubMed]

Mol. Imaging (1)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging 2(2), 113–123 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Med. (1)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

Nat. Methods (3)

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2007).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

R. Yuste, “Fluorescence microscopy today,” Nat. Methods 2(12), 902–904 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (3)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography,” Phys. Med. Biol. 54(9), 2769–2777 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352 (1999).
[CrossRef]

Other (3)

B. A. J. Angelsen, Ultrasound imaging - Waves, Signals, and Signal Processing (Emantec, Trondheim, 2000).

American National Standards for the Safe Use of Lasers, ANSI Z136.1, American Laser Institute (2000).

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative optoacoustic tomography using sparse signal representation,” IEEE Trans. Med. Imag., DOI: 10.1109/TMI.2009.2027116 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of the multispectral optoacoustic tomography setup.

Fig. 2
Fig. 2

Schematic representation of the continuous acquisition method and four important points concerning Doppler effect.

Fig. 3
Fig. 3

(a) In-plane resolution measurements of cylindrically-focused PZT transducer with center frequency of 15 MHz using 10 µm microsphere suspension, attaining an in-plane resolution of 32 µm, inset: optoacoustic image of a microsphere; (b) Vertical scan through a microsphere located 19.035mm in front of the transducer. Vertical resolution of ~155 µm is derived for this distance. The distance is calculated via time-of-flight method, and the figure is obtained by vertically scanning the phantom and recording acoustic signal coming from the same distance. The blue curve indicates the measured signal intensity variations and the red line is the Gaussian fit; (c) Vertical resolution dependence on the distance between the imaged object and the transducer.

Fig. 4
Fig. 4

(a) Cross-sectional optoacoustic image of Ph1 acquired in continuous acquisition mode with 270 angular projections; (b) reconstruction of Ph1 in averaged acquisition mode with 90 projections and 32 averages per projection; (c) reconstruction of Ph2 in continuous acquisition mode with 960 projections; (d) reconstruction of Ph2 in averaged acquisition mode with 20 projections and 32 averages per projection.

Fig. 5
Fig. 5

(a) Photograph of Ph3 with diameter of 28.5 mm; (b) Optoacoustic reconstruction of Ph3 acquired at 650nm; (c) Magnified image around the insertion. SNR is calculated from the green and magenta labeled regions, representing signal and background respectively.

Fig. 6
Fig. 6

(a) Optoacoustic image of intact drosophila pupa; (b) One-dimensional cut through the reconstructed image in (a) for verification of in-plane resolution; (c) Cross-sectional optoacoustic image of an intact 1- year old adult Zebrafish; (d) Corresponding histological slice made through a sacrificed Zebrafish specimen.

Fig. 7
Fig. 7

Transverse optoacoustic images (left) from the thorax and neck regions of a nude mouse with corresponding CT images (right) using a blood contrast agent. The images were acquired at three different heights on the mouse: (a) was acquired at the top of the shoulders, (b) through the scapulae, and (c) at the height of the heart. Prominent features visible on both the optoacoustic and CT images are labeled.

Fig. 8
Fig. 8

Optoacoustic image of Ph4 acquired at (a) 596 nm and (b) 612nm. (c) Subtraction between 596nm and 612nm images revealing location of the Texas Red dye.

Tables (1)

Tables Icon

Table 1 Optical properties of the phantoms used for experimental validation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ f f = v cos θ c
2 p ( r , t ) 1 v s 2 2 p ( r , t ) t 2 = ρ m β 2 T ( r , t ) t 2 = β μ a C I ( r , t ) t
p ( r ' , t ) = β μ a 4 π C v I ( r , t ' ) t ' d 3 r | r r ' | | t ' = t | r r ' | / v s
p s ( r ) = 1 2 π S ' t ¯ p ( r ' , t ¯ ) / t ¯ p ( r ' , t ¯ ) | r r ' | 3 n ^ ' ( r r ' ) d S ' | t ¯ = | r r ' |
μ a ( r ) U ( r ) = C β v s 2 p s ( r )
C N R = S D y e S B σ
p s ( r ) = β v 0 2 C μ ( r ) a U ( r )

Metrics