Abstract

We present rapid Mueller matrix polarimetry that can extract twelve Muller matrix elements from a single intensity image in real time and with high spatial resolution. This is achieved by parallelizing the respective polarization state generation and polarization state detection processes, which in existing polarimeters is performed sequentially. Parallelization of the polarization state generation process is accomplished through the use of vector beams, for which this work represents a new application domain. Polarization state detection is parallelized by uniquely combining a microscope/array detector setup with a specialized algorithm that simultaneously utilizes information from multiple spatial regions of the array detector. Simulated results applying this technique to two anisotropic samples including metamaterial yield material parameters that are consistent with those reported in the literature.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
    [CrossRef] [PubMed]
  2. J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
    [CrossRef] [PubMed]
  3. M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
    [CrossRef]
  4. Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006).
    [CrossRef]
  5. W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
    [CrossRef]
  6. M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
    [CrossRef]
  7. M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).
  8. W. Osten, ed., Optical inspection of microsystems (CRC Press, 2006).
  9. R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw Hill, Inc., New York, 1995), Chap. 22.
  10. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
    [CrossRef] [PubMed]
  11. R. A. Synowicki, J. N. Hilfiker, and P. K. Whitman, “Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DKDP),” Thin Solid Films 455–456, 624–627 (2004).
    [CrossRef]
  12. J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
    [CrossRef]
  13. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36(31), 8190–8198 (1997).
    [CrossRef] [PubMed]
  14. C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006).
    [CrossRef]
  15. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
    [CrossRef] [PubMed]
  16. S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi A 205(4), 743–747 (2008).
    [CrossRef]
  17. P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96(1-3), 108–140 (1980).
    [CrossRef]
  18. C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
    [CrossRef]
  19. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
    [CrossRef]
  20. G. E. Jellison., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films 313–314(1-2), 33–39 (1998).
    [CrossRef]
  21. A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and A. Gioti, “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455–456, 43–49 (2004).
    [CrossRef]
  22. R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. 16(8), 1997–2006 (1999).
    [CrossRef]
  23. F. Delplancke, “Automated high-speed Mueller matrix scatterometer,” Appl. Opt. 36(22), 5388–5395 (1997).
    [CrossRef] [PubMed]
  24. F. H. Delplancke, “Investigation of rough surfaces and transparent birefringent samples with Mueller-matrix scatterometry,” Appl. Opt. 36(30), 7621–7628 (1997).
    [CrossRef] [PubMed]
  25. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36(31), 8184–8189 (1997).
    [CrossRef] [PubMed]
  26. E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998).
    [CrossRef]
  27. J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24(1), 64–66 (1999).
    [CrossRef] [PubMed]
  28. D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004).
    [CrossRef]
  29. K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005).
    [CrossRef] [PubMed]
  30. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007).
    [CrossRef]
  31. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [CrossRef] [PubMed]
  32. A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901–153904 (2006).
    [CrossRef] [PubMed]
  33. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [CrossRef]
  34. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990).
    [CrossRef] [PubMed]
  35. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [CrossRef]
  36. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
    [CrossRef]
  37. C. Brosseau, “Interaction of radiation with linear media,” in Fundamentals of polarized light: a statistical optics approach (John Wiley and Sons, Inc., New York, 1998), Chap. 4.
  38. E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat Nano 2(1), 25–32 (2007).
    [CrossRef]
  39. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
    [CrossRef]
  40. L. Novotny, and B. Hecht, “Propagation and focusing of optical fields,” in Principles of nano-optics (Cambridge University Press, New York, 2007), Chap. 3.
  41. E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. 253(1274), 349–357 (1959).
    [CrossRef]
  42. W.-Q. Zhang, “New phase shift formulas and stability of waveplate in oblique incident beam,” Opt. Commun. 176(1-3), 9–15 (2000).
    [CrossRef]
  43. R. M. A. Azzam, and N. M. Bashara, “Reflection and transmission of polarized light by stratified planar structure,” in Ellipsometry and polarized light (North Holland, Amsterdam, 1989), Chap. 4.
  44. D. W. Berreman, “Optics in stratified and anisotropic media - 4X4 matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972).
    [CrossRef]
  45. H. Fujiwara, “Ellipsometry of anisotropic materials,” in Spectroscopic ellipsometry: principles and application (John Wiley and Sons Ltd, West Sussex, 2007), Chap. 6.
  46. M. Becchi and P. Galatola, “Berreman-matrix formulation of light propagation in stratified anisotropic chiral media,” Eur. Phys. J. B 8(3), 399–404 (1999).
    [CrossRef]
  47. M. Iwanaga, “Effective optical constants in stratified metal-dielectric metameterial,” Opt. Lett. 32(10), 1314–1316 (2007).
    [CrossRef] [PubMed]
  48. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  49. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [CrossRef]

2009

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
[CrossRef]

2008

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi A 205(4), 743–747 (2008).
[CrossRef]

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

2007

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
[CrossRef]

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007).
[CrossRef]

E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat Nano 2(1), 25–32 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

M. Iwanaga, “Effective optical constants in stratified metal-dielectric metameterial,” Opt. Lett. 32(10), 1314–1316 (2007).
[CrossRef] [PubMed]

2006

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901–153904 (2006).
[CrossRef] [PubMed]

Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006).
[CrossRef]

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006).
[CrossRef]

2005

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005).
[CrossRef] [PubMed]

2004

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004).
[CrossRef]

R. A. Synowicki, J. N. Hilfiker, and P. K. Whitman, “Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DKDP),” Thin Solid Films 455–456, 624–627 (2004).
[CrossRef]

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
[CrossRef]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[CrossRef]

A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and A. Gioti, “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455–456, 43–49 (2004).
[CrossRef]

2003

2000

W.-Q. Zhang, “New phase shift formulas and stability of waveplate in oblique incident beam,” Opt. Commun. 176(1-3), 9–15 (2000).
[CrossRef]

1999

M. Becchi and P. Galatola, “Berreman-matrix formulation of light propagation in stratified anisotropic chiral media,” Eur. Phys. J. B 8(3), 399–404 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24(1), 64–66 (1999).
[CrossRef] [PubMed]

R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. 16(8), 1997–2006 (1999).
[CrossRef]

1998

G. E. Jellison., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films 313–314(1-2), 33–39 (1998).
[CrossRef]

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998).
[CrossRef]

1997

1992

1990

1980

P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96(1-3), 108–140 (1980).
[CrossRef]

1972

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. 253(1274), 349–357 (1959).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901–153904 (2006).
[CrossRef] [PubMed]

An, I.

C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
[CrossRef]

Armelao, L.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Artal, P.

Aspnes, D. E.

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004).
[CrossRef]

Bajpai, V.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Barreca, D.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Bauer, B. J.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Becchi, M.

M. Becchi and P. Galatola, “Berreman-matrix formulation of light propagation in stratified anisotropic chiral media,” Eur. Phys. J. B 8(3), 399–404 (1999).
[CrossRef]

Bechstedt, F.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

Ben Hatit, S.

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi A 205(4), 743–747 (2008).
[CrossRef]

Bergmair, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Bernet, S.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007).
[CrossRef]

Berreman, D. W.

Bos, P. J.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Bouree, J. E.

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998).
[CrossRef]

Bratkovsky, A. M.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Bruno, G.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Bryant, D.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Bueno, J. M.

Capezzuto, P.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Cattelan, D.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Chandola, S.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

Chen, C.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006).
[CrossRef]

C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
[CrossRef]

Chu, J. H.

Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006).
[CrossRef]

Cobet, C.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Collins, R. W.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006).
[CrossRef]

C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
[CrossRef]

R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. 16(8), 1997–2006 (1999).
[CrossRef]

Compain, E.

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998).
[CrossRef]

de Martino, A.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi A 205(4), 743–747 (2008).
[CrossRef]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
[CrossRef] [PubMed]

Delplancke, F.

Delplancke, F. H.

Dohcevic-Mitrovic, Z.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

Drevillon, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[CrossRef]

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998).
[CrossRef]

Drévillon, B.

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi A 205(4), 743–747 (2008).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
[CrossRef] [PubMed]

Elman, J. F.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Esser, N.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

Fagan, J. A.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Fang, N.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Ferreira, G. M.

C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
[CrossRef]

Fleischer, K.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Foldyna, M.

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi A 205(4), 743–747 (2008).
[CrossRef]

Ford, D. H.

Fragal̀, I. L.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Furhapter, S.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007).
[CrossRef]

Gajic, R.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Galatola, P.

M. Becchi and P. Galatola, “Berreman-matrix formulation of light propagation in stratified anisotropic chiral media,” Eur. Phys. J. B 8(3), 399–404 (1999).
[CrossRef]

Galliet, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Garcia-Caurel, E.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
[CrossRef] [PubMed]

Gensch, M.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

Giangregorio, M. M.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Gilliot, M.

M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
[CrossRef]

Gioti, A.

A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and A. Gioti, “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455–456, 43–49 (2004).
[CrossRef]

Goldstein, D. H.

Grob, J. J.

M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
[CrossRef]

Hauge, P. S.

P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96(1-3), 108–140 (1980).
[CrossRef]

Hemzal, D.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Herzinger, C. M.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Hilfiker, J. N.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

R. A. Synowicki, J. N. Hilfiker, and P. K. Whitman, “Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DKDP),” Thin Solid Films 455–456, 624–627 (2004).
[CrossRef]

Hingerl, K.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Hinrichs, K.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

Ho, D. L.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Hobbie, E. K.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Horn, M. W.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006).
[CrossRef]

Hou, Y.

Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006).
[CrossRef]

Huang, Z. M.

Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006).
[CrossRef]

Huc, J.

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998).
[CrossRef]

Humlicek, J.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Iwanaga, M.

Jellison, G. E.

Jesacher, A.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007).
[CrossRef]

Johann, L.

M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
[CrossRef]

Johs, B.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Jureller, J. E.

Kim, E.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Kim, Y. K.

Kimura, W. D.

Koh, J.

R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. 16(8), 1997–2006 (1999).
[CrossRef]

Landi, B. J.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Laskarakis, A.

A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and A. Gioti, “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455–456, 43–49 (2004).
[CrossRef]

Laude, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

Liu, Y.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Logothetidis, S.

A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and A. Gioti, “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455–456, 43–49 (2004).
[CrossRef]

Losurdo, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Malandrino, G.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Mandelbaum, I.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Maurer, C.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007).
[CrossRef]

McGilp, J. F.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

Modine, F. A.

Montbach, E.

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

Muller, D.

M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
[CrossRef]

Naciri, A. E.

M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Ossikovski, R.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Parey, J. Y.

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998).
[CrossRef]

Park, S.

Pavlopoulou, E.

A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and A. Gioti, “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455–456, 43–49 (2004).
[CrossRef]

Podraza, N. J.

C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
[CrossRef]

Ponizovskaya, E.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Popovic, Z. V.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Pursel, S.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

Raffaelle, R.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
[CrossRef]

Richter, L. J.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007).
[CrossRef]

Ross, C.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006).
[CrossRef]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Saxl, O.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

Scherer, N. F.

Schmidt, W. G.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

Shen, Y. R.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Simpson, J. R.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Stoquert, J. P.

M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
[CrossRef]

Sun, C.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Synowicki, R. A.

R. A. Synowicki, J. N. Hilfiker, and P. K. Whitman, “Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DKDP),” Thin Solid Films 455–456, 624–627 (2004).
[CrossRef]

Tidwell, S. C.

Tondello, E.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

Tong, W.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Toussaint, K. C.

Vogel, E.

E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat Nano 2(1), 25–32 (2007).
[CrossRef]

Walker, A. R. H.

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

Wang, S. Y.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Whitman, P. K.

R. A. Synowicki, J. N. Hilfiker, and P. K. Whitman, “Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DKDP),” Thin Solid Films 455–456, 624–627 (2004).
[CrossRef]

Williams, R. S.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Wippermann, S.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

Wolf, E.

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. 253(1274), 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
[CrossRef]

Wu, W.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Xue, J. Q.

Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006).
[CrossRef]

Yu, Z.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Zapien, J. A.

C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
[CrossRef]

Zhan, Q.

Zhang, D. H.

Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006).
[CrossRef]

Zhang, W.-Q.

W.-Q. Zhang, “New phase shift formulas and stability of waveplate in oblique incident beam,” Opt. Commun. 176(1-3), 9–15 (2000).
[CrossRef]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. B

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Appl. Surf. Sci.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006).
[CrossRef]

Eur. Phys. J. B

M. Becchi and P. Galatola, “Berreman-matrix formulation of light propagation in stratified anisotropic chiral media,” Eur. Phys. J. B 8(3), 399–404 (1999).
[CrossRef]

J. Electrochem. Soc.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008).
[CrossRef]

J. Nanopart. Res.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).

J. Opt. Soc. Am.

R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. 16(8), 1997–2006 (1999).
[CrossRef]

D. W. Berreman, “Optics in stratified and anisotropic media - 4X4 matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972).
[CrossRef]

J. Phys. D

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

N. J. Phys.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007).
[CrossRef]

Nat Nano

E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat Nano 2(1), 25–32 (2007).
[CrossRef]

Opt. Commun.

W.-Q. Zhang, “New phase shift formulas and stability of waveplate in oblique incident beam,” Opt. Commun. 176(1-3), 9–15 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. B

M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007).
[CrossRef]

Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Phys. Rev. Lett.

S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009).
[CrossRef] [PubMed]

J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007).
[CrossRef] [PubMed]

A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901–153904 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi A

S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi A 205(4), 743–747 (2008).
[CrossRef]

Proc. R. Soc. Lond.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. 253(1274), 349–357 (1959).
[CrossRef]

Science

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Surf. Sci.

P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96(1-3), 108–140 (1980).
[CrossRef]

Thin Solid Films

C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004).
[CrossRef]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[CrossRef]

G. E. Jellison., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films 313–314(1-2), 33–39 (1998).
[CrossRef]

A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and A. Gioti, “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455–456, 43–49 (2004).
[CrossRef]

R. A. Synowicki, J. N. Hilfiker, and P. K. Whitman, “Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DKDP),” Thin Solid Films 455–456, 624–627 (2004).
[CrossRef]

J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004).
[CrossRef]

E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998).
[CrossRef]

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004).
[CrossRef]

Other

W. Osten, ed., Optical inspection of microsystems (CRC Press, 2006).

R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw Hill, Inc., New York, 1995), Chap. 22.

L. Novotny, and B. Hecht, “Propagation and focusing of optical fields,” in Principles of nano-optics (Cambridge University Press, New York, 2007), Chap. 3.

C. Brosseau, “Interaction of radiation with linear media,” in Fundamentals of polarized light: a statistical optics approach (John Wiley and Sons, Inc., New York, 1998), Chap. 4.

R. M. A. Azzam, and N. M. Bashara, “Reflection and transmission of polarized light by stratified planar structure,” in Ellipsometry and polarized light (North Holland, Amsterdam, 1989), Chap. 4.

H. Fujiwara, “Ellipsometry of anisotropic materials,” in Spectroscopic ellipsometry: principles and application (John Wiley and Sons Ltd, West Sussex, 2007), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the proposed experimental RAMMP setup. See text for details.

Fig. 2
Fig. 2

Schematic of the coordinate systems used in the derivation of the Mueller matrix description. The change in the polarization state of a general ray as it passes through the system is also shown.

Fig. 3
Fig. 3

Block diagram representation of the steps taken for numerical analysis. Here (a) represents the approach for generating the synthetic data, and (b) the inverse model for retrieving the Mueller matrix elements of the sample. Refer text for details.

Fig. 4
Fig. 4

Schematic of samples numerically studied. (a) A thin anisotropic film deposited on top of a crystalline silicon sample. (b) Stratified metal-dielectric metamaterial.

Fig. 5
Fig. 5

Polarization state distribution along azimuth of the vector beam used in the calculations. .

Fig. 6
Fig. 6

Mueller matrix elements for the sample in Fig. 4(a) as calculated from the (a) Berreman formalism, and as recovered using (b) RAMMP.

Fig. 7
Fig. 7

Mueller matrix elements for the sample in Fig. 4(b) as calculated from the (a) Berreman formalism, and as recovered using (b) RAMMP.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S ( r , Φ ) = [ S 0 ( r , Φ ) , S 1 ( r , Φ ) , S 2 ( r , Φ ) , S 3 ( r , Φ ) ] T ,
M R ( Φ ) = [ 1 0 0 0 0 cos ( 2 Φ ) sin ( 2 Φ ) 0 0 - sin ( 2 Φ ) cos ( 2 Φ ) 0 0 0 0 1 ] .
M R F = 1 cos ( θ ) [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] ,
M W P ( 0 , δ ) = [ 1 0 0 0 0 1 0 0 0 0 cos ( δ ) sin ( δ ) 0 0 - sin ( δ ) cos ( δ )   ] .
M S ( θ ,   Φ = 0 , ) = [ M 11 M 12 M 13 M 14 M 21 M 22 M 23 M 24 M 31 M 32 M 33 M 34 M 41 M 42 M 43 M 44 ] ,
M R L = [ 1 0 0 0 0 1 0 0 0 0 - 1 0 0 0 0 - 1 ] ,
M C L = cos ( θ ) [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] ,
M LP = 1 2 [ 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ] ,
A = [ 1 0 0 0 ] ,
P ( r , Φ ) = A M L P M R ( π + Φ ) * M C L * M R ( π Φ ) M W P ( 0 , δ ) M R ( π + Φ ) M R L M R ( Φ ) M S ( θ , Φ = 0 ) M R ( Φ ) * M R ( Φ ) M W P ( 0 , δ ) M R ( Φ ) M R F M R ( Φ ) S ( r , Φ ) .
P ( r , Φ ) = W M = [ W 11 W 12 W 13 W 14 W 21 W 44 ] [ M 11 M 12 M 13 M 14 M 21 M 44 ] ,
P = W M = [ P 1 P 2 P N ] = [ W 1 ,   11 W 1 ,   12 W 1 ,   44 W 2 ,   11 W 2 ,   12 W 2 ,   44 W N ,   11 W N ,   12 W N ,   44 ] [ M 11 M 12 M 44 ] ,
M ^ E s t = ( W T * W ) 1 W T P = W 1 P P ,

Metrics