Abstract

Challenges remain in imaging fast biological activities through whole body using fluorescence diffuse optical tomography (FDOT). We propose and analyze three full angle FDOT systems with different beam-forming illuminations (BF-FDOT), including line illumination (L-FDOT), area illumination (A-FDOT), and multiple-points illumination (MP-FDOT). Singular value analysis and experimental validation are used to optimize the experimental parameters in terms of hardware design, data collection and utilization. Comparisons are made on the system performance between L-FDOT and the conventional point illumination based full angle FDOT system (P-FDOT) with both numerical simulation and phantom experiment. We demonstrate that at least three cycles of projections are needed for P-FDOT to achieve comparable whole body image quality with L-FDOT. We also compare these three BF-FDOT systems and further discuss how these optimized parameters can be employed to improve spatial and temporal performances within current computational capacities, and guide the design of the BF-FDOT systems.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
    [CrossRef]
  2. K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  4. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
    [CrossRef] [PubMed]
  5. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
    [CrossRef] [PubMed]
  6. J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
    [CrossRef]
  7. D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
    [CrossRef] [PubMed]
  8. C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
    [CrossRef] [PubMed]
  9. D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
    [CrossRef] [PubMed]
  10. M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
    [CrossRef] [PubMed]
  11. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
    [CrossRef] [PubMed]
  12. V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
    [CrossRef] [PubMed]
  13. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
    [CrossRef] [PubMed]
  14. H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007).
    [CrossRef] [PubMed]
  15. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
    [CrossRef] [PubMed]
  16. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13(7), 2564–2577 (2005).
    [CrossRef] [PubMed]
  17. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
    [CrossRef] [PubMed]
  18. G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
    [CrossRef] [PubMed]
  19. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
    [CrossRef] [PubMed]
  20. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
    [CrossRef] [PubMed]
  21. G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci. 18(6), 707–711 (2008).
    [CrossRef]
  22. T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
    [CrossRef] [PubMed]
  23. B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4(8), 270–286 (1999).
    [CrossRef] [PubMed]
  24. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
    [CrossRef] [PubMed]
  25. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
    [CrossRef] [PubMed]
  26. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
    [CrossRef]
  27. F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009).
    [CrossRef] [PubMed]
  28. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express 14(14), 6516–6534 (2006).
    [CrossRef] [PubMed]
  29. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
    [CrossRef] [PubMed]
  30. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
    [CrossRef] [PubMed]
  31. A. Kak, and M. Slaney, Computerized Tomographic Imaging (New York: IEEE Press, 1987), ch. 7.
  32. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries,” J. Biomed. Opt. 11(4), 044007 (2006).
    [CrossRef] [PubMed]
  33. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004).
    [CrossRef] [PubMed]
  34. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008).
    [CrossRef] [PubMed]
  35. D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009).
    [CrossRef] [PubMed]
  36. D. Hyde, E. Miller, D. H. Brooks, and V. Ntziachristos, “A statistical approach to inverting the Born ratio,” IEEE Trans. Med. Imaging 26(7), 893–905 (2007).
    [CrossRef] [PubMed]

2009 (5)

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009).
[CrossRef] [PubMed]

F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009).
[CrossRef] [PubMed]

2008 (6)

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008).
[CrossRef] [PubMed]

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
[CrossRef]

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci. 18(6), 707–711 (2008).
[CrossRef]

2007 (6)

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
[CrossRef] [PubMed]

H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007).
[CrossRef] [PubMed]

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

D. Hyde, E. Miller, D. H. Brooks, and V. Ntziachristos, “A statistical approach to inverting the Born ratio,” IEEE Trans. Med. Imaging 26(7), 893–905 (2007).
[CrossRef] [PubMed]

2006 (3)

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries,” J. Biomed. Opt. 11(4), 044007 (2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express 14(14), 6516–6534 (2006).
[CrossRef] [PubMed]

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

2005 (3)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13(7), 2564–2577 (2005).
[CrossRef] [PubMed]

2004 (5)

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[CrossRef]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[CrossRef] [PubMed]

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

2003 (2)

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

2002 (2)

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

1995 (1)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

Achilefu, S.

Adams, K. E.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

Aikawa, E.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Alexandrakis, G.

Arridge, S. R.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

Bai, J.

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009).
[CrossRef] [PubMed]

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci. 18(6), 707–711 (2008).
[CrossRef]

H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007).
[CrossRef] [PubMed]

Bangerth, W.

Barry, M. A.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

Berger, M.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Bloch, S. R.

Bogdanov, A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Boutet, J.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Brauer, R.

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Brooks, D. H.

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

D. Hyde, E. Miller, D. H. Brooks, and V. Ntziachristos, “A statistical approach to inverting the Born ratio,” IEEE Trans. Med. Imaging 26(7), 893–905 (2007).
[CrossRef] [PubMed]

Chen, J. W.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Chen, Y.

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009).
[CrossRef] [PubMed]

Cherry, S. R.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Coll, J. L.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Culver, J. P.

Da Silva, A.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

de Kleine, R.

J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
[CrossRef]

de Kleine, R. D.

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Dehghani, H.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Deliolanis, N.

J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

Dinten, J. M.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Dunn, J. F.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Fan, Z.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

Feng, H.

H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007).
[CrossRef] [PubMed]

Figueiredo, J. L.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Frey, O.

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

Gibbs-Strauss, S. L.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

Godavarty, A.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries,” J. Biomed. Opt. 11(4), 044007 (2006).
[CrossRef] [PubMed]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Graves, E. E.

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

Haas, M.

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

Haller, J.

J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
[CrossRef]

Hansch, A.

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

Hervé, L.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Hilger, I.

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

Hirschi, K.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

Holboke, M. J.

Hu, G.

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci. 18(6), 707–711 (2008).
[CrossRef]

H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007).
[CrossRef] [PubMed]

Hutchins, M.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

Hyde, D.

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
[CrossRef]

D. Hyde, E. Miller, D. H. Brooks, and V. Ntziachristos, “A statistical approach to inverting the Born ratio,” IEEE Trans. Med. Imaging 26(7), 893–905 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

Javier, D. J.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Jiang, H.

Josephson, L.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Joshi, A.

Josserand, V.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Kaiser, W.

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

Ke, S.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

Kepshire, D. S.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

Khayat, M.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

Koenig, A.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Krucker, T.

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Kwon, S.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

Lasser, T.

Leahy, R. M.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Leblond, F.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

Liang, F.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

Liu, H.

Liu, X.

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009).
[CrossRef] [PubMed]

Lu, Y.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

MacLaurin, S. A.

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Malich, A.

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

Mawad, M. E.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

McBride, T. O.

McCann, C. M.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Miller, E.

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

D. Hyde, E. Miller, D. H. Brooks, and V. Ntziachristos, “A statistical approach to inverting the Born ratio,” IEEE Trans. Med. Imaging 26(7), 893–905 (2007).
[CrossRef] [PubMed]

Mincu, N.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

Mitchell, G.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Niedre, M.

J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
[CrossRef]

Ntziachristos, V.

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
[CrossRef]

D. Hyde, E. Miller, D. H. Brooks, and V. Ntziachristos, “A statistical approach to inverting the Born ratio,” IEEE Trans. Med. Imaging 26(7), 893–905 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[CrossRef]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
[CrossRef] [PubMed]

O’Hara, J. A.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

Osterberg, U. L.

Patwardhan, S. V.

Paulsen, K. D.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4(8), 270–286 (1999).
[CrossRef] [PubMed]

Peltié, P.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Pichler, B. J.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Pierce, M. C.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Pittet, M. J.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[CrossRef] [PubMed]

Pogue, B. W.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4(8), 270–286 (1999).
[CrossRef] [PubMed]

Richards-Kortum, R.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Ripoll, J.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[CrossRef]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

Rizo, P.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Roy, R.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries,” J. Biomed. Opt. 11(4), 044007 (2006).
[CrossRef] [PubMed]

Sauner, D.

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Schulz, R. B.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[CrossRef] [PubMed]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries,” J. Biomed. Opt. 11(4), 044007 (2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express 14(14), 6516–6534 (2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004).
[CrossRef] [PubMed]

Smith, D. J.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Song, X.

H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007).
[CrossRef] [PubMed]

Soubret, A.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

Springett, R.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Srinivasan, S.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

Tan, Y.

Tian, F.

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Vecchi, S.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Wang, D.

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009).
[CrossRef] [PubMed]

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Waterman, P.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

Weisser, U.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Weissleder, R.

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
[CrossRef]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
[CrossRef] [PubMed]

Xu, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Yao, J.

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci. 18(6), 707–711 (2008).
[CrossRef]

H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007).
[CrossRef] [PubMed]

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

Zavattini, G.

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Appl. Opt. (3)

Arth. Rheum. (1)

A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004).
[CrossRef]

IEEE Trans. Inf. Technol. Biomed. (1)

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (3)

D. Hyde, E. Miller, D. H. Brooks, and V. Ntziachristos, “A statistical approach to inverting the Born ratio,” IEEE Trans. Med. Imaging 26(7), 893–905 (2007).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004).
[CrossRef] [PubMed]

Int. J. Biomed. Imaging (1)

H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007).
[CrossRef] [PubMed]

Int. J. Cancer (1)

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008).
[CrossRef]

J. Biomed. Opt. (5)

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[CrossRef] [PubMed]

K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries,” J. Biomed. Opt. 11(4), 044007 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Image Anal. (1)

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).
[CrossRef] [PubMed]

Med. Phys. (3)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Nature (1)

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008).
[CrossRef] [PubMed]

Neuroimage (2)

C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009).
[CrossRef] [PubMed]

D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Med. Biol. (1)

G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Prog. Nat. Sci. (1)

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci. 18(6), 707–711 (2008).
[CrossRef]

Other (1)

A. Kak, and M. Slaney, Computerized Tomographic Imaging (New York: IEEE Press, 1987), ch. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The schematics of full angle imaging systems and the experimental parameters. (a)-(d) The top views and side views of full angle imaging systems with different illumination strategies, including line illumination (a), area illumination (b), multiple-points illumination (c), and point illumination (d). The blue lines and points in (a)-(d) indicate the illumination sources. (e) Illustration of detector horizontal field of view. (f) Illustration of the detector vertical field of view. (g) Illustration of detector spacing. (h) Simplified illustration of the 3D reconstruction mesh using a 2D mesh in X-Y slice.

Fig. 2
Fig. 2

Phantom and tubes settings for simulated and experimental experiments. (a) Simulated experiment. 6 cylinder tubes (diameter of 0.3cm and height of 0.3cm) were placed at different heights (1.7cm, 3.0cm, and 5.25cm) inside a cylinder phantom (diameter of 2.0cm and height of 6.0cm). The edge to edge distance was 0.3cm for each two tubes at the same height. (b) Experimental experiment. Two tubes (glass tubes of 0.3cm diameter filled with 10uL, 1.3uM ICG) were placed inside a cylinder phantom (a glass cylinder of 3.0cm diameter filled with 1% intralipid). The center distance of the two tubes along Z axis was 2.4cm.

Fig. 3
Fig. 3

Singular value analysis of experimental parameters for L-FDOT. (a) The singular value spectra for different projections numbers. The experimental parameters used are detailed in study A1. (b) Study A1, singular value analysis of the number of projections (evenly distributed over the full angle) for L-FDOT. Plots are for setups with 0.1cm (circles) and 0.15cm (pluses) mesh spacings. (c) Study A2, singular value analysis of detector vertical FOV. Plots are for setups with 3cm (pluses), 4cm (diamonds), and 5cm (circles) long line sources. (d) Study A3, singular value analysis of detector horizontal FOV. Plots are for setups with 3cm (pluses), 4cm (diamonds) and 5cm (circles) long line sources. (e) Study A4, singular value analysis of detector spacing. Plots are for setups with 0.1cm (circles) and 0.15cm (pluses) mesh spacings. (f) Study A5, singular value analysis of mesh spacing. Plots are for setups with 0.2cm (pluses), 0.15cm (diamonds) and 0.1cm (circles) detector spacings. (g) Study A6, singular value analysis of line source length.

Fig. 4
Fig. 4

Reconstructions of simulated data with 4-36 projections and 3-4 cm long line sources for L-FDOT. The images are at slice X = 0. The black squares represent the actual tubes. For each reconstruction, we used detectors distributed over 1.8cmx5.8cm FOV with 0.2cm spacing, and a reconstruction mesh inside the imaged object and 5.8cm height range with 0.1cm spacing.

Fig. 5
Fig. 5

Reconstructions of experimental data with 4-36 projections for L-FDOT. The cross section images are at the height slices of the tubes centers, which are depicted using the red circles in the 3D view. The red curves on the cross images represent the phantom boundary, and the black circles represent the actual tubes. For each reconstruction, we used detectors distributed over 2.2cmx5.4cm FOV with 0.2cm spacing, and a reconstruction mesh over 3.0cmx3.0cmx5.4cm with 0.1cm spacing.

Fig. 6
Fig. 6

Singular value analysis of specific experimental parameters for P-FDOT. We used 24 projections, 1.8cm detector horizontal FOV, 0.2cm detector spacing for each cycle. The reconstruction mesh was inside the imaged object and 5.8cm height range with 0.1cm spacing. (a) Singular value analysis of the detector vertical FOV for P-FDOT with one cycle of projections. The optimal vertical FOV (2.8cm) was used in the following singular value studies (d-f). (b) Illustration of the symmetric distributions of point sources along Z axis for P-FDOT with two cycles of projections. (c) Illustration of the symmetric distributions of point sources along Z axis for P-FDOT with three cycles of projections. (d) Singular value analysis of the point sources distribtution along Z axis for P-FDOT with two cycles of projections. (e) Singular value analysis of the point sources distribtution along Z axis for P-FDOT with three cycles of projections. (f) Singular value analysis of the number of cycles when using the optimal point sources distributions obtained in (d) and (e). The NSVAT for L-FDOT with 4cm long line source is also plotted as a line in (f), where 24 projections, detectors over 1.8cmx5.8cm with 0.2cm spacing, and a reconstruction mesh inside the imaged object and 5.8cm height range with 0.1cm spacing were used.

Fig. 7
Fig. 7

Reconstructions of simulated data for P-FDOT with 1-4 cyles of projections. The images are at slice X = 0. The black squares represent the actual tubes. 24 projections, detectors distributed over 1.8cmx2.8cm FOV with 0.2cm spacing were used for each cycle. The reconstruction mesh inside the imaged object and 5.8cm height range with 0.1cm spacing was used for each reconstruction.

Fig. 8
Fig. 8

Singular value analysis of the specific experimental parameters for A-FDOT and MP-FDOT. 24 projections, detectors distributed over 1.8cm horizontal FOV with 0.2cm spacing, and reconstruction mesh inside the imaged object and 5.8cm height range with 0.1cm spacing were used. (a) Plot of the detector vertical FOV versus the area width for A-FDOT with 4cm area length. (b) Singular value analysis of the effects of the area width for A-FDOT with 4cm area length. The optimal detector vertical FOV in (a) was used. (c) Singular value analysis of the effects of the points density for MP-FDOT with 4cm points distribution range. 5.8cm vertical FOV was used. The NSVAT for L-FDOT with 4cm long line source is also plotted as a line in (b)-(c), where 24 projections, detectors over 1.8cmx5.8cm FOV with 0.2cm spacing, and a reconstruction mesh inside the imaged object and 5.8cm height range with 0.1cm spacing were used.

Fig. 9
Fig. 9

Reconstructions of simulated data for MP-FDOT with different points densities, and A-FDOT with different area widths. The images are at slice X = 0. The black squares represent the actual tubes. 24 projections, detectors distributed over 1.8cm horizontal FOV with 0.2cm spacing, and a reconstruction mesh inside the imaged object and 5.8cm height range with 0.1cm spacing were used for each reconstruction. For MP-FDOT with 4cm points distribution range, 5.8cm vertical FOV was used. For A-FDOT with 4cm area length, the optimal vertical FOV in Fig. 8(a) were used.

Tables (1)

Tables Icon

Table 1 The experimental sets for L-FDOT.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ [ D ( r ) G ( r ) ]  + μ a ( r ) G ( r ) = S ( r )    r Ω 2 q D ( r ) G ( r ) / n + G ( r ) = 0                  r Ω ,
L ( r ) : = { { r l } L ( r ) d r = 1 L ( r 1 ) = L ( r 2 )               r 1 , r 2 { r l } L ( r ) = 0                      r { r l } A ( r ) : = { { r a } A ( r ) d r = 1 A ( r 1 ) = A ( r 2 )              r 1 , r 2 { r a } A ( r ) = 0                     r { r a } , M P ( r ) : = 1 / M { r m p } δ ( r r i )     r i { r m p }  
Φ m ( r d ) Φ x ( r d ) = Θ V G S ( r ) ( r p ) G δ ( r r d ) ( r p ) n ( r p ) G S ( r ) ( r d ) d r p ,
Φ m ( r d ) Φ x ( r d ) = Θ Δ V G S ( r ) ( r d ) [ G S ( r ) ( r p 1 ) G δ ( r r d ) ( r p 1 )        G S ( r ) ( r p N ) G δ ( r r d ) ( r p N ) ] ( n ( r p 1 ) n ( r p N ) ) ,
( Φ m ( r d 1 ) / Φ x ( r d 1 ) Φ m ( r d M ) / Φ x ( r d M ) ) = W ( n ( r p 1 ) n ( r p N ) ) .

Metrics