Abstract

A two-dimensional symmetric hybrid plasmonic waveguide that integrates two high-refractive-index dielectric slabs with a finite-width insulator-metal-insulator (IMI) structure is proposed, and the characteristics of its long-range propagation mode are numerically analyzed at 1550 nm wavelength. In contrast to the previously studied structures, the gap between the slabs and the metal stripe and the associated field enhancement effect result in the dramatically modified modal behavior. It is shown that, under optimized configurations, the transmission loss can be reduced significantly with little change in the mode confinement capability compared to similar dielectric-loaded surface plasmon polariton waveguides. Studies on the crosstalk between adjacent such hybrid waveguides reveal the ability to increase the integration density by ~60 times compared with the traditional IMI structures when used in 3D photonic circuits. The studied waveguide could be an interesting alternative to realize high density photonic circuits.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
    [CrossRef]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [CrossRef]
  4. J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol. 26(11), 1510–1518 (2008).
    [CrossRef]
  5. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
    [CrossRef] [PubMed]
  6. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
    [CrossRef]
  7. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
    [CrossRef]
  8. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
    [CrossRef] [PubMed]
  9. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
    [CrossRef]
  10. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  11. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [CrossRef]
  12. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
    [CrossRef]
  13. Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17(5), 3610–3618 (2009).
    [CrossRef] [PubMed]
  14. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, “Simulations of hybrid long-range plasmon modes with application to 90° bends,” Opt. Lett. 32(16), 2354–2356 (2007).
    [CrossRef] [PubMed]
  15. P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102(3), 033112 (2007).
    [CrossRef]
  16. J. P. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
    [CrossRef] [PubMed]
  17. J. P. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16(2), 1232–1237 (2008).
    [CrossRef] [PubMed]
  18. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  19. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of Hybrid Dielectric Plasmonic Waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
    [CrossRef]
  20. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  23. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
    [CrossRef] [PubMed]
  24. G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (6)

J. P. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16(2), 1232–1237 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of Hybrid Dielectric Plasmonic Waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol. 26(11), 1510–1518 (2008).
[CrossRef]

G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008).
[CrossRef] [PubMed]

2007 (6)

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
[CrossRef] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, “Simulations of hybrid long-range plasmon modes with application to 90° bends,” Opt. Lett. 32(16), 2354–2356 (2007).
[CrossRef] [PubMed]

P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102(3), 033112 (2007).
[CrossRef]

2006 (2)

J. P. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
[CrossRef] [PubMed]

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
[CrossRef]

2005 (3)

2004 (2)

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Adato, R.

Almeida, V. R.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Barrios, C. A.

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Benabid, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Berini, P.

P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102(3), 033112 (2007).
[CrossRef]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Binfeng, Y.

Boltasseva, A.

Bozhevolnyi, S. I.

Brongersma, M. L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[CrossRef]

Buckley, R.

Catrysse, P. B.

Charbonneau, R.

Cordeiro, C. M. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Couny, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Cruz, C. H. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Dal Negro, L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Degiron, A.

Dellagiacoma, C.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, S. H.

Feng, N. N.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Fragnito, H. L.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Garcia-Meca, C.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of Hybrid Dielectric Plasmonic Waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Guo, J. P.

Guohua, H.

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

Jetté-Charbonneau, S.

Ju, J. J.

Kim, J. T.

Kim, M. S.

Kjaer, K.

Knight, J. C.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Lahoud, N.

Larsen, M. S.

Lee, M. H.

Leosson, K.

Lipson, M.

Maier, S. A.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
[CrossRef]

Marti, J.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of Hybrid Dielectric Plasmonic Waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Martin, O. J. F.

Martinez, A.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of Hybrid Dielectric Plasmonic Waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Mattiussi, G.

McIlhargey, J. G.

Nikolajsen, T.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ortuno, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of Hybrid Dielectric Plasmonic Waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Park, S.

Park, S. K.

Park, Y. J.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Salvador, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of Hybrid Dielectric Plasmonic Waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Selker, M. D.

Shvets, G.

Smith, D. R.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Veronis, G.

Wiederhecker, G. S.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Xu, Q. F.

Yiping, C.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Zia, R.

IEEE J. Quantum Electron. (1)

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
[CrossRef]

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of Hybrid Dielectric Plasmonic Waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

J. Appl. Phys. (1)

P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102(3), 033112 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

N. J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. B (2)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the proposed symmetric hybrid SPP waveguide structure

Fig. 2
Fig. 2

Normalized Ey distribution along y direction of (a) the long-range hybrid SPP mode; (b) the short-range hybrid SPP mode, where hg is set at 30 nm.

Fig. 3
Fig. 3

Energy density distribution of (a) the long-range hybrid SPP mode; (b) the long-range SPP mode; (c) the symmetric mode of the symmetric dielectric-loaded SPP waveguide.

Fig. 4
Fig. 4

(a) Mode effective index; (b) Propagation length of the long-range hybrid SPP mode at different hg .

Fig. 5
Fig. 5

(a) Profile of the normalized energy density in y direction; (b) Mode sizes at various gap heights. The mode sizes in x and y direction are drawn in blue and red, respectively. Solid line: the long-range hybrid SPP mode, dash-dotted line: the long-range SPP mode, dashed line: the symmetric mode of the symmetric dielectric-loaded SPP waveguide.

Fig. 6
Fig. 6

(a) Propagation length of the hybrid SPP mode at different metal thicknesses; (b) Propagation length and mode size of the hybrid SPP mode at different slab widths.

Fig. 7
Fig. 7

The dependence of the normalized coupling length on the CTC spacing between two hybrid waveguides. Dash line: Lc /L =1

Metrics