Abstract

We demonstrate controllable structural color based on periodic nanopatterned 2D lattices in pure protein films of silk fibroin. We show here periodic lattices in silk fibroin films with feature sizes of hundreds of nanometers that exhibit different colors as a function of varying lattice spacing. Further, when varying the index of refraction contrast between the nanopatterned lattice and its surrounding environment by applying liquids on top of the lattices, colorimetric shifts are observed. The effect is characterized experimentally and theoretically and a simple example of glucose concentration sensing is presented. This is the first example of a functional sensor based on silk fibroin optics.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Biomacromolecules 3(6), 1233–1239 (2002).
    [CrossRef] [PubMed]
  2. H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
    [CrossRef]
  3. U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
    [CrossRef] [PubMed]
  4. X. Wang, H. J. Kim, P. Xu, A. Matsumoto, and D. L. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir 21(24), 11335–11341 (2005).
    [CrossRef] [PubMed]
  5. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
    [CrossRef] [PubMed]
  6. C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
    [CrossRef]
  7. T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, “Modification of nanostructured materials for biomedical applications,” Mater. Sci. Eng. C 27(3), 579–594 (2007).
    [CrossRef]
  8. Q. Lv, C. Cao, Y. Zhang, X. Ma, and H. Zhu, “Preparation of insoluble fibroin films without methanol treatment,” J. Appl. Polym. Sci. 96(6), 2168–2173 (2005).
    [CrossRef]
  9. J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, “Molecular beam deposition of DNA nanometer films,” Nano Lett. 7(1), 133–137 (2007).
    [CrossRef] [PubMed]
  10. B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
    [CrossRef] [PubMed]
  11. A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
    [CrossRef]
  12. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
    [CrossRef] [PubMed]
  13. M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
    [CrossRef] [PubMed]
  14. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
    [CrossRef]
  15. H. Perry, A. Gopinath, D. L. Kaplan, L. D. Negro, and F. G. Omenetto, “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20(16), 3070–3072 (2008).
    [CrossRef]
  16. S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” J. Biomed. Mater. Res. 54(1), 139–148 (2001).
    [CrossRef] [PubMed]
  17. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express 16(8), 5544–5555 (2008).
    [CrossRef] [PubMed]
  18. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
    [CrossRef] [PubMed]
  19. E. G. Loewen, and E. Popov, Diffraction Gratings and Applications (M. Dekker, New York, 1997).
  20. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11(11), 2851–2861 (1994).
    [CrossRef]
  21. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
    [CrossRef] [PubMed]
  22. C. A. Browne, A Handbook of Sugar Analysis (John Wiley & Sons, New York, 1912).
  23. C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, “Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer,” Talanta 73(2), 358–365 (2007).
    [CrossRef] [PubMed]
  24. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
    [CrossRef]
  25. S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express 16(17), 12511–12522 (2008).
    [CrossRef] [PubMed]
  26. B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
    [CrossRef]
  27. S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
    [CrossRef] [PubMed]

2009 (2)

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

2008 (6)

S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express 16(17), 12511–12522 (2008).
[CrossRef] [PubMed]

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[CrossRef]

H. Perry, A. Gopinath, D. L. Kaplan, L. D. Negro, and F. G. Omenetto, “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20(16), 3070–3072 (2008).
[CrossRef]

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express 16(8), 5544–5555 (2008).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

2007 (7)

A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[CrossRef]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
[CrossRef] [PubMed]

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, “Modification of nanostructured materials for biomedical applications,” Mater. Sci. Eng. C 27(3), 579–594 (2007).
[CrossRef]

J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, “Molecular beam deposition of DNA nanometer films,” Nano Lett. 7(1), 133–137 (2007).
[CrossRef] [PubMed]

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, “Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer,” Talanta 73(2), 358–365 (2007).
[CrossRef] [PubMed]

2005 (3)

Q. Lv, C. Cao, Y. Zhang, X. Ma, and H. Zhu, “Preparation of insoluble fibroin films without methanol treatment,” J. Appl. Polym. Sci. 96(6), 2168–2173 (2005).
[CrossRef]

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

X. Wang, H. J. Kim, P. Xu, A. Matsumoto, and D. L. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir 21(24), 11335–11341 (2005).
[CrossRef] [PubMed]

2004 (1)

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
[CrossRef] [PubMed]

2003 (1)

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

2002 (2)

H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Biomacromolecules 3(6), 1233–1239 (2002).
[CrossRef] [PubMed]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

2001 (2)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” J. Biomed. Mater. Res. 54(1), 139–148 (2001).
[CrossRef] [PubMed]

1994 (1)

Altman, G. H.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

Boriskina, S. V.

Calabro, T.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

Cao, C.

Q. Lv, C. Cao, Y. Zhang, X. Ma, and H. Zhu, “Preparation of insoluble fibroin films without methanol treatment,” J. Appl. Polym. Sci. 96(6), 2168–2173 (2005).
[CrossRef]

Cebe, P.

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

Chen, J.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

Chen, Y.-Q.

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, “Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer,” Talanta 73(2), 358–365 (2007).
[CrossRef] [PubMed]

Cheng, C.-S.

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, “Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer,” Talanta 73(2), 358–365 (2007).
[CrossRef] [PubMed]

Cronin-Golomb, M.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

Cunningham, B.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Dal Negro, L.

Dallapiccola, R.

Diaz, F.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

Drummy, L. F.

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

Feng, N.-N.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Fridrikh, S. V.

H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Biomacromolecules 3(6), 1233–1239 (2002).
[CrossRef] [PubMed]

Georgakoudi, I.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

Gopinath, A.

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express 16(8), 5544–5555 (2008).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

H. Perry, A. Gopinath, D. L. Kaplan, L. D. Negro, and F. G. Omenetto, “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20(16), 3070–3072 (2008).
[CrossRef]

Gronowicz, G.

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” J. Biomed. Mater. Res. 54(1), 139–148 (2001).
[CrossRef] [PubMed]

Grote, J. G.

Gunawidjaja, R.

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

Gupta, M. K.

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

Hagen, J. A.

Horan, R. L.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

Hu, X.

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

Jakuba, C.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

Jiang, C.

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

Jin, H. J.

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
[CrossRef] [PubMed]

H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Biomacromolecules 3(6), 1233–1239 (2002).
[CrossRef] [PubMed]

Jin, H.-J.

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

Kadakia, M. P.

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

Kaplan, D. L.

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[CrossRef]

H. Perry, A. Gopinath, D. L. Kaplan, L. D. Negro, and F. G. Omenetto, “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20(16), 3070–3072 (2008).
[CrossRef]

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

X. Wang, H. J. Kim, P. Xu, A. Matsumoto, and D. L. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir 21(24), 11335–11341 (2005).
[CrossRef] [PubMed]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
[CrossRef] [PubMed]

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Biomacromolecules 3(6), 1233–1239 (2002).
[CrossRef] [PubMed]

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” J. Biomed. Mater. Res. 54(1), 139–148 (2001).
[CrossRef] [PubMed]

Karageorgiou, V.

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Khokhar, S. K.

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

Kim, H. J.

X. Wang, H. J. Kim, P. Xu, A. Matsumoto, and D. L. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir 21(24), 11335–11341 (2005).
[CrossRef] [PubMed]

Kim, U. J.

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
[CrossRef] [PubMed]

Klotzkin, D.

Lawrence, B. D.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

Li, C.

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
[CrossRef] [PubMed]

Li, P.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Li, W.

Li, W. X.

J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, “Molecular beam deposition of DNA nanometer films,” Nano Lett. 7(1), 133–137 (2007).
[CrossRef] [PubMed]

Lin, B.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Lin, Y. H.

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

Lu, C.-J.

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, “Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer,” Talanta 73(2), 358–365 (2007).
[CrossRef] [PubMed]

Lu, H.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

Lu, Q.

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

Lu, S.

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

Lv, Q.

Q. Lv, C. Cao, Y. Zhang, X. Ma, and H. Zhu, “Preparation of insoluble fibroin films without methanol treatment,” J. Appl. Polym. Sci. 96(6), 2168–2173 (2005).
[CrossRef]

Ma, X.

Q. Lv, C. Cao, Y. Zhang, X. Ma, and H. Zhu, “Preparation of insoluble fibroin films without methanol treatment,” J. Appl. Polym. Sci. 96(6), 2168–2173 (2005).
[CrossRef]

Mackowski, D. W.

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Matsumoto, A.

X. Wang, H. J. Kim, P. Xu, A. Matsumoto, and D. L. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir 21(24), 11335–11341 (2005).
[CrossRef] [PubMed]

McCarthy, M. B.

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” J. Biomed. Mater. Res. 54(1), 139–148 (2001).
[CrossRef] [PubMed]

Naik, R. R.

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

Negro, L. D.

H. Perry, A. Gopinath, D. L. Kaplan, L. D. Negro, and F. G. Omenetto, “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20(16), 3070–3072 (2008).
[CrossRef]

Nichols, H. L.

T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, “Modification of nanostructured materials for biomedical applications,” Mater. Sci. Eng. C 27(3), 579–594 (2007).
[CrossRef]

Omenetto, F. G.

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

H. Perry, A. Gopinath, D. L. Kaplan, L. D. Negro, and F. G. Omenetto, “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20(16), 3070–3072 (2008).
[CrossRef]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[CrossRef]

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

Park, J.

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
[CrossRef] [PubMed]

Perry, H.

H. Perry, A. Gopinath, D. L. Kaplan, L. D. Negro, and F. G. Omenetto, “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20(16), 3070–3072 (2008).
[CrossRef]

Phillips, D. M.

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

Qiu, J.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Richmond, J.

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

Rutledge, G. C.

H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Biomacromolecules 3(6), 1233–1239 (2002).
[CrossRef] [PubMed]

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Shi, D.

T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, “Modification of nanostructured materials for biomedical applications,” Mater. Sci. Eng. C 27(3), 579–594 (2007).
[CrossRef]

Sofia, S.

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” J. Biomed. Mater. Res. 54(1), 139–148 (2001).
[CrossRef] [PubMed]

Sowards, L. A.

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

Spaeth, H.

J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, “Molecular beam deposition of DNA nanometer films,” Nano Lett. 7(1), 133–137 (2007).
[CrossRef] [PubMed]

Steckl, A. J.

J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, “Molecular beam deposition of DNA nanometer films,” Nano Lett. 7(1), 133–137 (2007).
[CrossRef] [PubMed]

A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[CrossRef]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
[CrossRef] [PubMed]

Stellacci, F.

Tsukruk, V. V.

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

Uppal, N.

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

Valluzzi, R.

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
[CrossRef] [PubMed]

Van Duyne, R. P.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Wang, X.

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

X. Wang, H. J. Kim, P. Xu, A. Matsumoto, and D. L. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir 21(24), 11335–11341 (2005).
[CrossRef] [PubMed]

Wen, X.

T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, “Modification of nanostructured materials for biomedical applications,” Mater. Sci. Eng. C 27(3), 579–594 (2007).
[CrossRef]

Xu, P.

X. Wang, H. J. Kim, P. Xu, A. Matsumoto, and D. L. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir 21(24), 11335–11341 (2005).
[CrossRef] [PubMed]

Xu, T.

T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, “Modification of nanostructured materials for biomedical applications,” Mater. Sci. Eng. C 27(3), 579–594 (2007).
[CrossRef]

Yu, Z.

Zhang, N.

T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, “Modification of nanostructured materials for biomedical applications,” Mater. Sci. Eng. C 27(3), 579–594 (2007).
[CrossRef]

Zhang, Y.

Q. Lv, C. Cao, Y. Zhang, X. Ma, and H. Zhu, “Preparation of insoluble fibroin films without methanol treatment,” J. Appl. Polym. Sci. 96(6), 2168–2173 (2005).
[CrossRef]

Zhou, Y.

Zhu, H.

Q. Lv, C. Cao, Y. Zhang, X. Ma, and H. Zhu, “Preparation of insoluble fibroin films without methanol treatment,” J. Appl. Polym. Sci. 96(6), 2168–2173 (2005).
[CrossRef]

Adv. Funct. Mater. (2)

H.-J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Water-Stable Silk Films with Reduced β-Sheet Content,” Adv. Funct. Mater. 15(8), 1241–1247 (2005).
[CrossRef]

C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, “Mechanical Properties of Robust Ultrathin Silk Fibroin Films,” Adv. Funct. Mater. 17(13), 2229–2237 (2007).
[CrossRef]

Adv. Mater. (1)

H. Perry, A. Gopinath, D. L. Kaplan, L. D. Negro, and F. G. Omenetto, “Nano- and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films,” Adv. Mater. 20(16), 3070–3072 (2008).
[CrossRef]

Appl. Opt. (1)

Biomacromolecules (4)

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules 5(3), 786–792 (2004).
[CrossRef] [PubMed]

H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Biomacromolecules 3(6), 1233–1239 (2002).
[CrossRef] [PubMed]

S. Lu, X. Wang, Q. Lu, X. Hu, N. Uppal, F. G. Omenetto, and D. L. Kaplan, “Stabilization of enzymes in silk films,” Biomacromolecules 10(5), 1032–1042 (2009).
[CrossRef] [PubMed]

Biomaterials (1)

G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, “Silk-based biomaterials,” Biomaterials 24(3), 401–416 (2003).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

J. Appl. Polym. Sci. (1)

Q. Lv, C. Cao, Y. Zhang, X. Ma, and H. Zhu, “Preparation of insoluble fibroin films without methanol treatment,” J. Appl. Polym. Sci. 96(6), 2168–2173 (2005).
[CrossRef]

J. Biomed. Mater. Res. (1)

S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” J. Biomed. Mater. Res. 54(1), 139–148 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Langmuir (2)

M. K. Gupta, S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, and R. R. Naik, “Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth,” Langmuir 23(3), 1315–1319 (2007).
[CrossRef] [PubMed]

X. Wang, H. J. Kim, P. Xu, A. Matsumoto, and D. L. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir 21(24), 11335–11341 (2005).
[CrossRef] [PubMed]

Mater. Sci. Eng. C (1)

T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, “Modification of nanostructured materials for biomedical applications,” Mater. Sci. Eng. C 27(3), 579–594 (2007).
[CrossRef]

Nano Lett. (2)

J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, “Molecular beam deposition of DNA nanometer films,” Nano Lett. 7(1), 133–137 (2007).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[CrossRef]

A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[CrossRef]

Opt. Express (3)

Sens. Actuators B Chem. (1)

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Talanta (1)

C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, “Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer,” Talanta 73(2), 358–365 (2007).
[CrossRef] [PubMed]

Other (2)

C. A. Browne, A Handbook of Sugar Analysis (John Wiley & Sons, New York, 1912).

E. G. Loewen, and E. Popov, Diffraction Gratings and Applications (M. Dekker, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A. SEM image of periodic nanoholes in silk. The nanoholes are 200 nm in diameter, 30 nm deep and separated by 300 nm. B) Magnified image of A. C) Periodic nanoholes in silk illuminated with light from a dark-field condenser. The lattice constants are from left to right 700, 600, 500, and 400 nm. The distance between the rows of colored squares is 200 μm.

Fig. 2
Fig. 2

(a) Experiment geometry. (b) Periodic imprinted nanoholes 200 nm in diameter and 30 nm deep illuminated with supercontinuum. The lattice constants Λ vary from right to left in the figure: 600 nm, 500 nm, 400 nm and 350 nm. The spacing between the colored squares is 200 μm. In the upper panel, the medium above the holes is air. In the bottom panel the medium above the holes is water. (c) Wavelength versus the diffracted angle for the first four diffractive orders of the silk gratings with the periods of 400 nm (i) and 600 nm (ii) (n2 = 1.54, θinc = 80°). The shaded areas cover the parameter range observable in the experiment (within the visible spectrum frequency band and within the collection cone). The direction of the incident beam is exaggerated for clarity.

Fig. 3
Fig. 3

Electric field scattered by a periodic grating of 256 200 nm diameter silk spheres with a lattice constant of 500 nm in air (a,c) and water (b,d). Plane waves of λ = 470 nm (blue), λ = 520 nm (green), and λ = 630 nm (red) are incident at 10 degrees angle to the array plane and scatter into well-defined grating orders (a,b). (c,d) The scattered electric field distributions in the plane 100 μm above the grating (top view). The circles represent a cross-section of the collection cone of a microscope with NA = 0.13 ( ± 7.5 degrees)

Fig. 4
Fig. 4

Experimental structural color change with varying refractive index. (a) Spectra of the 400 nm lattice constant structure illuminated with supercontinuum with different concentrations of glucose. (b) Plot of the peak in (a) vs. glucose concentration and index of refraction.

Fig. 5
Fig. 5

Theoretical calculation for refractometric sensing with periodic silk gratings: (a) Normalized back-scattering cross-section of a grating composed of 256 100nm-radius silk spheres with a lattice constant of 600 nm immersed in water and glucose solutions and illuminated by a plane wave at 10 degrees to the array plane; (b) Shift of the peak wavelength as a function of the glucose concentration in the solution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = Λ m ( n 1 sin θ i n c + n 2 sin θ d i f ) , m = 0 , ± 1 , ± 2

Metrics