Abstract

Bi2+-doped MBPO5 (M = Ba2+, Sr2+, Ca2+), synthesized in air via solid state reaction, are considered as novel orange and red phosphors for white light emitting diodes with improved colour quality. Absorption of Bi2+ due to 2P1/22S1/2 and 2P1/22P3/2 could be observed and quantified. Excitation to 2P3/2 is accompanied by vibronic sidebands, and corresponding emission behaviour is found. The electron-phonon coupling strength increases in the order M = Ba2+→Sr2+→Ca2+. In the case of MBPO5:Bi2+, one-, two- and even three-phonon sidebands could clearly be observed. The crystal structure of all three compounds belongs to space group P3121. Bi2+ is incorporated on M2+ sites, and reduction of Bi3+ to Bi2+ occurs for reasons of charge compensation. In accordance with crystallographic data, fluorescence decay behaviour indicates that only one type of Bi2+-emission centers is present.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
    [CrossRef]
  2. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [CrossRef] [PubMed]
  3. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers - a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
    [CrossRef] [PubMed]
  4. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
    [CrossRef]
  5. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627 (2009).
    [CrossRef]
  6. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
    [CrossRef]
  7. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
    [CrossRef]
  8. S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
    [CrossRef]
  9. M. Peng, C. Zollfrank and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature” J. Phys.: Condens. Matter, 21, 285106–1-6, (2009).
  10. G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescnece in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55(2), 171–174 (1994).
    [CrossRef]
  11. M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
    [CrossRef]
  12. A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin. 78(4), 239–243 (1998).
    [CrossRef]
  13. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white light emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
    [CrossRef] [PubMed]
  14. L. Su, P. Zhou, J. Yu, H. Li, L. Zheng, F. Wu, Y. Yang, Q. Yang, and J. Xu, “Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials,” Opt. Express 17(16), 13554–13560 (2009).
    [CrossRef] [PubMed]
  15. H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
    [CrossRef]
  16. Q. Su, H. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
    [CrossRef]
  17. H. Bauer, “Über eine Reihe isotyper Erdalkaliboratphosphate und –arsenate vom Typus 2MeO.X2O5.B2O3,” Z. Anorg. Allg. Chem. 337(3-4), 183–190 (1965).
    [CrossRef]
  18. H. Bauer, “Die Verbindungen 2BaO.P2O5.B2O3 und 2BaO.As2O5.B2O3,” Z. Anorg. Allg. Chem. 345(5-6), 225–229 (1966).
    [CrossRef]
  19. R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
    [CrossRef]
  20. A. Rulmont and P. Tarte, “Lanthanide borogermanate LnBGeO5: synthesis and structural study by X-Ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75(2), 244–250 (1988).
    [CrossRef]
  21. S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
    [CrossRef]
  22. Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
    [CrossRef]
  23. D. Pushcharovsky, E. Gobetchia, M. Pasero, S. Merlino, and O. Dimitrova, “Hydrothermal synthesis and crystal structures of Li,Ba-nanoborate, LiBaB9O15, and Ba-borophosphate, BaBPO5,” J. Alloy. Comp. 339(1-2), 70–75 (2002).
    [CrossRef]
  24. http://www.ill.eu/sites/fullprof/ (2009)
  25. J. Rodriguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1-2), 55–69 (1993).
    [CrossRef]
  26. A. Baykal, M. Kizilyalli, G. Gözel, and R. Kniep, “Synthesis of strontium borophosphate SrBPO5 by solid state and hydrothermal methods and characterisation,” Cryst. Res. Technol. 35(3), 247–254 (2000).
    [CrossRef]
  27. C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
    [CrossRef]
  28. M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
    [CrossRef]
  29. G. Blasse, “Vibronic transitions in rare earth spectroscopy,” Int. Rev. Phys. Chem. 11(1), 71–100 (1992).
    [CrossRef]
  30. C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin. 60–61, 74–77 (1994).
    [CrossRef]
  31. K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
    [CrossRef]
  32. M. Nazarov, B. Tsukerblat, and D. Noh, “Vibronic coupling parameters and Stokes shift in thiogallate phosphors,” J. Phys. Chem. Solids 69(10), 2605–2612 (2008).
    [CrossRef]

2009

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627 (2009).
[CrossRef]

L. Su, P. Zhou, J. Yu, H. Li, L. Zheng, F. Wu, Y. Yang, Q. Yang, and J. Xu, “Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials,” Opt. Express 17(16), 13554–13560 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white light emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

2008

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

M. Nazarov, B. Tsukerblat, and D. Noh, “Vibronic coupling parameters and Stokes shift in thiogallate phosphors,” J. Phys. Chem. Solids 69(10), 2605–2612 (2008).
[CrossRef]

2007

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

2006

2004

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
[CrossRef]

2003

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

2002

D. Pushcharovsky, E. Gobetchia, M. Pasero, S. Merlino, and O. Dimitrova, “Hydrothermal synthesis and crystal structures of Li,Ba-nanoborate, LiBaB9O15, and Ba-borophosphate, BaBPO5,” J. Alloy. Comp. 339(1-2), 70–75 (2002).
[CrossRef]

Q. Su, H. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

2000

A. Baykal, M. Kizilyalli, G. Gözel, and R. Kniep, “Synthesis of strontium borophosphate SrBPO5 by solid state and hydrothermal methods and characterisation,” Cryst. Res. Technol. 35(3), 247–254 (2000).
[CrossRef]

1999

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

1998

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin. 78(4), 239–243 (1998).
[CrossRef]

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

1994

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
[CrossRef]

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin. 60–61, 74–77 (1994).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescnece in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55(2), 171–174 (1994).
[CrossRef]

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

1993

J. Rodriguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1-2), 55–69 (1993).
[CrossRef]

1992

G. Blasse, “Vibronic transitions in rare earth spectroscopy,” Int. Rev. Phys. Chem. 11(1), 71–100 (1992).
[CrossRef]

1988

A. Rulmont and P. Tarte, “Lanthanide borogermanate LnBGeO5: synthesis and structural study by X-Ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75(2), 244–250 (1988).
[CrossRef]

1966

H. Bauer, “Die Verbindungen 2BaO.P2O5.B2O3 und 2BaO.As2O5.B2O3,” Z. Anorg. Allg. Chem. 345(5-6), 225–229 (1966).
[CrossRef]

1965

H. Bauer, “Über eine Reihe isotyper Erdalkaliboratphosphate und –arsenate vom Typus 2MeO.X2O5.B2O3,” Z. Anorg. Allg. Chem. 337(3-4), 183–190 (1965).
[CrossRef]

1950

K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
[CrossRef]

Asbrand, M.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
[CrossRef]

Bauer, H.

H. Bauer, “Die Verbindungen 2BaO.P2O5.B2O3 und 2BaO.As2O5.B2O3,” Z. Anorg. Allg. Chem. 345(5-6), 225–229 (1966).
[CrossRef]

H. Bauer, “Über eine Reihe isotyper Erdalkaliboratphosphate und –arsenate vom Typus 2MeO.X2O5.B2O3,” Z. Anorg. Allg. Chem. 337(3-4), 183–190 (1965).
[CrossRef]

Baykal, A.

A. Baykal, M. Kizilyalli, G. Gözel, and R. Kniep, “Synthesis of strontium borophosphate SrBPO5 by solid state and hydrothermal methods and characterisation,” Cryst. Res. Technol. 35(3), 247–254 (2000).
[CrossRef]

Blasse, G.

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin. 60–61, 74–77 (1994).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescnece in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55(2), 171–174 (1994).
[CrossRef]

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

G. Blasse, “Vibronic transitions in rare earth spectroscopy,” Int. Rev. Phys. Chem. 11(1), 71–100 (1992).
[CrossRef]

Bufetov, I. A.

Bulatov, L. I.

Chen, C.

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

Chen, D.

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Chen, W.

H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
[CrossRef]

Chen, X.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Crombag, M.

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin. 60–61, 74–77 (1994).
[CrossRef]

de Mello Donegá, C.

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin. 60–61, 74–77 (1994).
[CrossRef]

Dianov, E. M.

Dimitrova, O.

D. Pushcharovsky, E. Gobetchia, M. Pasero, S. Merlino, and O. Dimitrova, “Hydrothermal synthesis and crystal structures of Li,Ba-nanoborate, LiBaB9O15, and Ba-borophosphate, BaBPO5,” J. Alloy. Comp. 339(1-2), 70–75 (2002).
[CrossRef]

Du, C.

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

Dvoyrin, V. V.

Eisenmann, B.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
[CrossRef]

Fang, J.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
[CrossRef]

Folkerts, H.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

Fu, P.

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

Fujimoto, Y.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Fujita, H.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Gobetchia, E.

D. Pushcharovsky, E. Gobetchia, M. Pasero, S. Merlino, and O. Dimitrova, “Hydrothermal synthesis and crystal structures of Li,Ba-nanoborate, LiBaB9O15, and Ba-borophosphate, BaBPO5,” J. Alloy. Comp. 339(1-2), 70–75 (2002).
[CrossRef]

Gözel, G.

A. Baykal, M. Kizilyalli, G. Gözel, and R. Kniep, “Synthesis of strontium borophosphate SrBPO5 by solid state and hydrothermal methods and characterisation,” Cryst. Res. Technol. 35(3), 247–254 (2000).
[CrossRef]

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
[CrossRef]

Guryanov, A. N.

Hamstra, M.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

Hao, J.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Hong, G.

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Hu, T.

Q. Su, H. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Huang, K.

K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
[CrossRef]

Jiang, N.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Jiang, X.

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Ju, X.

H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
[CrossRef]

Kanabe, T.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Khopin, V. F.

Kizilyalli, M.

A. Baykal, M. Kizilyalli, G. Gözel, and R. Kniep, “Synthesis of strontium borophosphate SrBPO5 by solid state and hydrothermal methods and characterisation,” Cryst. Res. Technol. 35(3), 247–254 (2000).
[CrossRef]

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
[CrossRef]

Kniep, R.

A. Baykal, M. Kizilyalli, G. Gözel, and R. Kniep, “Synthesis of strontium borophosphate SrBPO5 by solid state and hydrothermal methods and characterisation,” Cryst. Res. Technol. 35(3), 247–254 (2000).
[CrossRef]

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
[CrossRef]

Kustov, E. F.

Lakshminarayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Lei, W.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

Li, H.

Li, Z.

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

Liang, H.

H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
[CrossRef]

Q. Su, H. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Liang, J.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Lin, C.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
[CrossRef]

Lin, J.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
[CrossRef]

Liu, Q.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Liu, T.

Q. Su, H. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Luo, Y.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
[CrossRef]

Mashinsky, V. M.

Meijerink, A.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescnece in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55(2), 171–174 (1994).
[CrossRef]

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin. 60–61, 74–77 (1994).
[CrossRef]

Melkumov, M. A.

Meng, X.

Merlino, S.

D. Pushcharovsky, E. Gobetchia, M. Pasero, S. Merlino, and O. Dimitrova, “Hydrothermal synthesis and crystal structures of Li,Ba-nanoborate, LiBaB9O15, and Ba-borophosphate, BaBPO5,” J. Alloy. Comp. 339(1-2), 70–75 (2002).
[CrossRef]

Murata, K.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Nakatsuka, M.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Nazarov, M.

M. Nazarov, B. Tsukerblat, and D. Noh, “Vibronic coupling parameters and Stokes shift in thiogallate phosphors,” J. Phys. Chem. Solids 69(10), 2605–2612 (2008).
[CrossRef]

Noh, D.

M. Nazarov, B. Tsukerblat, and D. Noh, “Vibronic coupling parameters and Stokes shift in thiogallate phosphors,” J. Phys. Chem. Solids 69(10), 2605–2612 (2008).
[CrossRef]

Nomes, M.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescnece in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55(2), 171–174 (1994).
[CrossRef]

Pan, S.

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

Pasero, M.

D. Pushcharovsky, E. Gobetchia, M. Pasero, S. Merlino, and O. Dimitrova, “Hydrothermal synthesis and crystal structures of Li,Ba-nanoborate, LiBaB9O15, and Ba-borophosphate, BaBPO5,” J. Alloy. Comp. 339(1-2), 70–75 (2002).
[CrossRef]

Pei, Z.

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Peng, M.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white light emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Pushcharovsky, D.

D. Pushcharovsky, E. Gobetchia, M. Pasero, S. Merlino, and O. Dimitrova, “Hydrothermal synthesis and crystal structures of Li,Ba-nanoborate, LiBaB9O15, and Ba-borophosphate, BaBPO5,” J. Alloy. Comp. 339(1-2), 70–75 (2002).
[CrossRef]

Qiu, J.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Quan, Z.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
[CrossRef]

Rao, G.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Rhys, A.

K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
[CrossRef]

Rodriguez-Carvajal, J.

J. Rodriguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1-2), 55–69 (1993).
[CrossRef]

Röhr, C.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
[CrossRef]

Rulmont, A.

A. Rulmont and P. Tarte, “Lanthanide borogermanate LnBGeO5: synthesis and structural study by X-Ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75(2), 244–250 (1988).
[CrossRef]

Shi, Y.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Shubin, A. V.

Srivastava, A.

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin. 78(4), 239–243 (1998).
[CrossRef]

Su, L.

Su, Q.

H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Q. Su, H. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Tao, Y.

H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
[CrossRef]

Q. Su, H. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Tarte, P.

A. Rulmont and P. Tarte, “Lanthanide borogermanate LnBGeO5: synthesis and structural study by X-Ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75(2), 244–250 (1988).
[CrossRef]

Tsukerblat, B.

M. Nazarov, B. Tsukerblat, and D. Noh, “Vibronic coupling parameters and Stokes shift in thiogallate phosphors,” J. Phys. Chem. Solids 69(10), 2605–2612 (2008).
[CrossRef]

Umnikov, A. A.

Wang, S.

H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
[CrossRef]

Wondraczek, L.

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white light emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627 (2009).
[CrossRef]

Wu, E.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

Wu, F.

Wu, Y.

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

Xu, J.

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Yang, J.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Yang, L.

Yang, Q.

Yang, Y.

Yashkov, M. V.

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

You, H.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
[CrossRef]

Yu, J.

Zeng, H.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

Zhang, G.

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

Zhang, H.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Zhang, J.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
[CrossRef]

Zhao, Q.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

Zheng, L.

Zhou, P.

Zhou, S.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Zhu, B.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Zhu, C.

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Zhuang, W.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Zuidema, J.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescnece in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55(2), 171–174 (1994).
[CrossRef]

Adv. Funct. Mater.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli, “„Borophosphate - Eine stiefmütterlich behandelte Verbindungsklasse: Die Kristallstrukturen von MII[BPO5] (MII = Ca, Sr) und Ba3[BP3O12],” Angew. Chem. Int. Ed. Engl. 33, 749–750 (1994).
[CrossRef]

Chem. Mater.

S. Pan, Y. Wu, P. Fu, G. Zhang, Z. Li, C. Du, and C. Chen, “Growth, Structure, and Properties of Single Crystals of SrBPO5,” Chem. Mater. 15(11), 2218–2221 (2003).
[CrossRef]

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater. 18(2), 458–464 (2006).
[CrossRef]

Chem. Phys. Lett.

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu prepared in air atmosphere,” Chem. Phys. Lett. 371(1-2), 1–6 (2003).
[CrossRef]

Cryst. Res. Technol.

A. Baykal, M. Kizilyalli, G. Gözel, and R. Kniep, “Synthesis of strontium borophosphate SrBPO5 by solid state and hydrothermal methods and characterisation,” Cryst. Res. Technol. 35(3), 247–254 (2000).
[CrossRef]

Fusion Eng. Des.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Int. Rev. Phys. Chem.

G. Blasse, “Vibronic transitions in rare earth spectroscopy,” Int. Rev. Phys. Chem. 11(1), 71–100 (1992).
[CrossRef]

J. Alloy. Comp.

D. Pushcharovsky, E. Gobetchia, M. Pasero, S. Merlino, and O. Dimitrova, “Hydrothermal synthesis and crystal structures of Li,Ba-nanoborate, LiBaB9O15, and Ba-borophosphate, BaBPO5,” J. Alloy. Comp. 339(1-2), 70–75 (2002).
[CrossRef]

Q. Su, H. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

J. Am. Ceram. Soc.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

J. Lumin.

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin. 78(4), 239–243 (1998).
[CrossRef]

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin. 60–61, 74–77 (1994).
[CrossRef]

J. Mater. Chem.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627 (2009).
[CrossRef]

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem. 4(8), 1349–1350 (1994).
[CrossRef]

J. Phys. Chem. Solids

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescnece in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids 55(2), 171–174 (1994).
[CrossRef]

H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, and Q. Su, “The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis range,” J. Phys. Chem. Solids 65(6), 1071–1076 (2004).
[CrossRef]

M. Nazarov, B. Tsukerblat, and D. Noh, “Vibronic coupling parameters and Stokes shift in thiogallate phosphors,” J. Phys. Chem. Solids 69(10), 2605–2612 (2008).
[CrossRef]

J. Solid State Chem.

A. Rulmont and P. Tarte, “Lanthanide borogermanate LnBGeO5: synthesis and structural study by X-Ray diffractometry and vibrational spectroscopy,” J. Solid State Chem. 75(2), 244–250 (1988).
[CrossRef]

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

Physica B

J. Rodriguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1-2), 55–69 (1993).
[CrossRef]

Proc. R. Soc. Lond. A Math. Phys. Sci.

K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
[CrossRef]

Z. Anorg. Allg. Chem.

H. Bauer, “Über eine Reihe isotyper Erdalkaliboratphosphate und –arsenate vom Typus 2MeO.X2O5.B2O3,” Z. Anorg. Allg. Chem. 337(3-4), 183–190 (1965).
[CrossRef]

H. Bauer, “Die Verbindungen 2BaO.P2O5.B2O3 und 2BaO.As2O5.B2O3,” Z. Anorg. Allg. Chem. 345(5-6), 225–229 (1966).
[CrossRef]

Other

http://www.ill.eu/sites/fullprof/ (2009)

M. Peng, C. Zollfrank and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature” J. Phys.: Condens. Matter, 21, 285106–1-6, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

HT-XRD patterns of Ba0.995BPO5: 0.005Bi mixture between 800 and 1200°C. Red circles denote the refelection peaks due to BaBPO5 (JCPDS Card No. 19-96); blue circles, β-Ba(PO3)2 (JCPDS Card No. 43-518); and green circles, Ba4B2O7 (JCPDS Card No. 24-84). Note that this data was taken in situ during heating. For kinetic reasons, BaBPO5 is not observed in single phase state.

Fig. 2
Fig. 2

Rietveld refinement of XRD patterns of M0.995BPO5: 0.005Bi (M = Ca2+, Sr2+ and Ba2+). Data (-o-) and fit (––), the difference profile and expected reflection positions are displayed.

Fig. 3
Fig. 3

FTIR Spectra of M0.995BPO5: 0.005Bi (M = Ca2+, Sr2+ and Ba2+) (a) and sketch of the corresponding structure (b).

Fig. 4
Fig. 4

Excitation and emission spectra of M0.995BPO5: 0.005Bi (M = Ca2+ (1, λem = 660nm; 2, λex = 416nm), Sr2+ (3, λem = 660nm; 4, λex = 413nm)and Ba2+ (5, λem = 660nm; 6, λex = 430nm;)) at room temperature. The spectral region of 320-650nm was amplified 10 times for clarity.

Fig. 5
Fig. 5

Fluorescence decay curve of Ba0.995BPO5: 0.005Bi prepared in air. Excitation and emission wavelengths are 267 nm and 641nm, respectively. The red curve it a fit of the experimental data to a first order exponential decay equation (lifetime of 22 μs, correlation coefficient 99.84%). Inset: coordination environment of the Ba2+ site (green: oxygen ions; red: Ba2+).

Fig. 6
Fig. 6

Time resolved spectra of Ba0.995BPO5: 0.005Bi. Excitation wavelength is 430nm. Delay times are listed in legend.

Tables (2)

Tables Icon

Table 1 Lattice parameters of M0.995BPO5: 0.005Bi (M = Ca2+, Sr2+ and Ba2+)

Tables Icon

Table 2 Spectroscopic data and fluorescence lifetime of Bi2+ in M0.995BPO5: 0.005Bi (M = Ca2+, Sr2+ and Ba2+) to/from ground state 2P1/2.

Metrics