Abstract

A novel surface-enhanced Raman scattering (SERS) excitation source based on focusing of surface plasmons around the center hole of a metal disk for cascaded enhancement is put forward and studied theoretically. The device offers intense SERS excitation with quasi-uniformity and horizontal polarization over a comparatively large hole through the combination of electromagnetic field focusing and hole plasmon resonance. As revealed by finite-difference time-domain (FDTD) method, the intensity spectra and the characteristics of the near field for the wavelength range of 650-1000nm exhibit a number of enhancement modes. Electric field intensity of the optimal mode enhances the SERS signal inside the hole by over four orders. An analytical model was also developed to gain precise interpretation on FDTD results. Our model also reveals the possibility of achieving eight orders of enhancement by optimizing the scale of the disk. In addition to generation of highly optimized hot spots, the large active hole also offers potential applications in fluorescence enhancement and nonlinear spectroscopy.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Springer-Verlag: Berlin, 1988).
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [CrossRef]
  3. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
    [CrossRef] [PubMed]
  4. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
    [CrossRef]
  5. K. Sokolov, G. Chumanov, and T. M. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70(18), 3898–3905 (1998).
    [CrossRef] [PubMed]
  6. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  7. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
    [CrossRef]
  8. G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
    [CrossRef] [PubMed]
  9. X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
    [CrossRef] [PubMed]
  10. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
    [CrossRef]
  11. A. Otto, “What is observed in single molecule SERS, and why?” J. Raman. Spectrosc. 33(8), 593–598 (2002).
    [CrossRef]
  12. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
    [CrossRef] [PubMed]
  13. M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006).
    [CrossRef] [PubMed]
  14. F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
    [CrossRef] [PubMed]
  15. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  16. H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008).
    [CrossRef] [PubMed]
  17. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  18. T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
    [CrossRef] [PubMed]
  19. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
    [CrossRef]
  20. P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
    [CrossRef]
  21. A.-L. Baudrion, F. de Léon-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martin-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16(5), 3420–3429 (2008).
    [CrossRef] [PubMed]
  22. A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition (Artech House, Mass., 2005).
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  24. H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
    [CrossRef] [PubMed]
  25. A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
    [CrossRef] [PubMed]
  26. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
    [CrossRef] [PubMed]
  27. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [CrossRef]
  28. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
    [CrossRef] [PubMed]
  29. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
    [CrossRef]
  30. C. Huygens, Treatise on Light, English translatin by S. P. Thompson, ed., (Macmillan, London, 1912).
  31. D. A. B. Miller, “Huygens’s wave propagation principle corrected,” Opt. Lett. 16(18), 1370–1372 (1991).
    [CrossRef] [PubMed]
  32. J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003).
    [CrossRef]
  33. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
    [CrossRef]
  34. J. Alegret, P. Johansson, and M. Käll, “Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films,” N. J. Phys. 10(10), 105004 (2008).
    [CrossRef]
  35. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
    [CrossRef]
  36. X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006).
    [CrossRef]
  37. T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
    [CrossRef]
  38. A. Csáki, A. Steinbrück, S. Schröter, and W. Fritzsche, “Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures,” Plasmonics 1(2-4), 147–155 (2006).
    [CrossRef]
  39. K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate Effect on Surface Plasmons in Single Nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
    [CrossRef]

2008 (7)

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[CrossRef]

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[CrossRef] [PubMed]

H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008).
[CrossRef] [PubMed]

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[CrossRef] [PubMed]

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

A.-L. Baudrion, F. de Léon-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martin-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16(5), 3420–3429 (2008).
[CrossRef] [PubMed]

J. Alegret, P. Johansson, and M. Käll, “Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films,” N. J. Phys. 10(10), 105004 (2008).
[CrossRef]

2007 (1)

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate Effect on Surface Plasmons in Single Nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

2006 (6)

A. Csáki, A. Steinbrück, S. Schröter, and W. Fritzsche, “Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures,” Plasmonics 1(2-4), 147–155 (2006).
[CrossRef]

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006).
[CrossRef]

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[CrossRef] [PubMed]

M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006).
[CrossRef] [PubMed]

F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

2005 (6)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
[CrossRef] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

2004 (3)

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

2003 (4)

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003).
[CrossRef]

2002 (1)

A. Otto, “What is observed in single molecule SERS, and why?” J. Raman. Spectrosc. 33(8), 593–598 (2002).
[CrossRef]

2001 (1)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

1999 (1)

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

1998 (1)

K. Sokolov, G. Chumanov, and T. M. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70(18), 3898–3905 (1998).
[CrossRef] [PubMed]

1991 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Alegret, J.

J. Alegret, P. Johansson, and M. Käll, “Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films,” N. J. Phys. 10(10), 105004 (2008).
[CrossRef]

Ameer, G. A.

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Backman, V.

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006).
[CrossRef]

Baker, G. A.

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
[CrossRef] [PubMed]

Baudrion, A.-L.

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Bischoff, L.

J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003).
[CrossRef]

Bosnick, K.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Brus, L.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

Burge, R. E.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Chang, S.-H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chumanov, G.

K. Sokolov, G. Chumanov, and T. M. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70(18), 3898–3905 (1998).
[CrossRef] [PubMed]

Cotton, T. M.

K. Sokolov, G. Chumanov, and T. M. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70(18), 3898–3905 (1998).
[CrossRef] [PubMed]

Csáki, A.

A. Csáki, A. Steinbrück, S. Schröter, and W. Fritzsche, “Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures,” Plasmonics 1(2-4), 147–155 (2006).
[CrossRef]

Dahlin, A.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

de Léon-Pérez, F.

Dintinger, J.

Ditlbacher, H.

A.-L. Baudrion, F. de Léon-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martin-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16(5), 3420–3429 (2008).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Ebbesen, T. W.

Eng, L.

J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003).
[CrossRef]

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Fort, E.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[CrossRef]

Fritzsche, W.

A. Csáki, A. Steinbrück, S. Schröter, and W. Fritzsche, “Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures,” Plasmonics 1(2-4), 147–155 (2006).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Futamata, M.

M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006).
[CrossRef] [PubMed]

Gao, H. W.

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

García-Vidal, F. J.

Grafstrom, S.

J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003).
[CrossRef]

Gray, S. K.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate Effect on Surface Plasmons in Single Nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Gresillon, S.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Håkanson, U.

H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008).
[CrossRef] [PubMed]

Halas, N. J.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

Henzie, J.

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

Hohenau, A.

Höök, F.

H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008).
[CrossRef] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Jensen, T. R.

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

Jiang, J.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

Johansson, P.

J. Alegret, P. Johansson, and M. Käll, “Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films,” N. J. Phys. 10(10), 105004 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Käll, M.

J. Alegret, P. Johansson, and M. Käll, “Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films,” N. J. Phys. 10(10), 105004 (2008).
[CrossRef]

F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Kelley, L.

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

A.-L. Baudrion, F. de Léon-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martin-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16(5), 3420–3429 (2008).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Lassiter, J. B.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[CrossRef] [PubMed]

Lazarides, A.

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

Leitner, A.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Li, Z. P.

F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Lin, J.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Liu, Y.

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006).
[CrossRef]

Liu, Z.

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Mahboub, O.

Maillard, M.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

Martin-Moreno, L.

McFarland, A. D.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

Mei, T.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Miller, D. A. B.

Mirin, N.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[CrossRef] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Moore, D. S.

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Mu, G. G.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Nehl, C. L.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[CrossRef] [PubMed]

Nie, S. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[CrossRef] [PubMed]

Nordlander, P.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[CrossRef] [PubMed]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Odom, T. W.

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

Otto, A.

A. Otto, “What is observed in single molecule SERS, and why?” J. Raman. Spectrosc. 33(8), 593–598 (2002).
[CrossRef]

Park, T. H.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[CrossRef] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Qian, X. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[CrossRef] [PubMed]

Ratner, M. A.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate Effect on Surface Plasmons in Single Nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Schatz, G. C.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate Effect on Surface Plasmons in Single Nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Schröter, S.

A. Csáki, A. Steinbrück, S. Schröter, and W. Fritzsche, “Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures,” Plasmonics 1(2-4), 147–155 (2006).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Seidel, J.

J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003).
[CrossRef]

Shuford, K. L.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate Effect on Surface Plasmons in Single Nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

Sokolov, K.

K. Sokolov, G. Chumanov, and T. M. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70(18), 3898–3905 (1998).
[CrossRef] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Steinbrück, A.

A. Csáki, A. Steinbrück, S. Schröter, and W. Fritzsche, “Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures,” Plasmonics 1(2-4), 147–155 (2006).
[CrossRef]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Sutherland, D. S.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Svedberg, F.

F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Tan, P. S.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Wang, Q.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Wang, Y.

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

Wei, H.

H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008).
[CrossRef] [PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Xia, X.

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006).
[CrossRef]

Xu, H. X.

H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008).
[CrossRef] [PubMed]

F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

Yang, Z. L.

H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008).
[CrossRef] [PubMed]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Yuan, X.-C.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Zäch, M.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Zhang, X.

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

ACS Nano (1)

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (2)

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
[CrossRef] [PubMed]

Anal. Chem. (2)

K. Sokolov, G. Chumanov, and T. M. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70(18), 3898–3905 (1998).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

Appl. Phys. Lett. (5)

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[CrossRef]

J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate Effect on Surface Plasmons in Single Nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

Chem. Soc. Rev. (1)

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[CrossRef] [PubMed]

Faraday Discuss. (1)

M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

J. Cluster Sci. (1)

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

J. Phys. Chem. B (2)

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
[CrossRef]

J. Phys. D Appl. Phys. (1)

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[CrossRef]

J. Raman. Spectrosc. (1)

A. Otto, “What is observed in single molecule SERS, and why?” J. Raman. Spectrosc. 33(8), 593–598 (2002).
[CrossRef]

N. J. Phys. (1)

J. Alegret, P. Johansson, and M. Käll, “Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films,” N. J. Phys. 10(10), 105004 (2008).
[CrossRef]

Nano Lett. (4)

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Nanotechnology (1)

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Phys. Rev. Lett. (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Plasmonics (1)

A. Csáki, A. Steinbrück, S. Schröter, and W. Fritzsche, “Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures,” Plasmonics 1(2-4), 147–155 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Small (1)

H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008).
[CrossRef] [PubMed]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Springer-Verlag: Berlin, 1988).

A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition (Artech House, Mass., 2005).

C. Huygens, Treatise on Light, English translatin by S. P. Thompson, ed., (Macmillan, London, 1912).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the hollow metal disk. Metal: gold, substrate: silica, diameter D: 5 μ m to 9 . 8 μ m , thickness:   t = 5 0 nm , diameter of hole:   d = 0.3 μ m . Illumination: normal incident light from air with polarization along Z axis.

Fig. 2
Fig. 2

(a) (b) Simulated spectra of the steady amplitudes of E z at the center of the hole for different disk sizes. N is the number of the interference fringes along the radius for different peak wavelengths.

Fig. 3
Fig. 3

(a) Electric field amplitude distribution around the hole at the Y-Z plane for E t o t a l at 793.3nm, (b) for E y , (c) for E z . (d) The decay of E z along Z axis in the hole for different enhancement modes of 9 . 8 μ m hollow disk. (e, f, g) Examples showing the linear amplification of the excitation source at λ i = 794.0 nm for hollow disk with D = 5.0 μ m , d = 0.3 μ m , and the gold nanoparticle with diameter 50nm, with silica as the substrate, (e) for the electric field of an isolated excitation source, (f) for the electric field of an isolated gold nanoparticle, (g) for the electric field of the combined source-nanoparticle system.

Fig. 4
Fig. 4

(a) Steady-state distribution of electric field amplitude surrounding the hole at the Y-Z plane for the incident light with λ i = 83 0.0 nm . Space charge distribution at two interfaces and the SPP wavelength are highlighted. (b) Schematic of HPR condition with a grid scale of 10nm. (c) Steady-state distribution of electric field amplitude at a cross-section 10nm from the interface in the silica substrate with λ i = 83 0.0 nm .

Fig. 5
Fig. 5

Schematic of our analytical model. P is an arbitrary point of interest. The dash circular arcs refer to the SPP point sources due to (a) the right half-plane, (b) the left half-plane, (c) the hole. The Huygens principle is schematically illustrated in (b). The inset in (c) shows the integral interval β of SPPs from the hole.

Fig. 6
Fig. 6

FDTD and analytical results of the electric field intensity E z 2 along Z direction from the hole edge to the disk edge. The plots are take at the median section of the gold film where Y is constant for (a) λ i = 793 . 3nm , (b) λ i = 83 0.0 nm , and (c) λ i = 914 . 6nm . (d) The electric field amplitude at the hole center ( d = 0. 3 μ m ) for hollow metal disk with different diameters. The inset is zooming in the fitting between the initial discrete data obtained from FDTD simulation and the analytical equation.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε + ε s ε 1 + i ω τ + σ i ω ε 0
E p = E A n + E B n + E C n + E 0 e - δ i | y | e i k 0 y
n ( C π R n ) E 0 | cos θ n | [ e - | r - R n | / L S P P ] cos α | r - R n | 1 / 2 { e - i [ k s p p ( r - R n ) + φ ] } e - δ S P P y
E A n
θ n ( π / 2 , π / 2 )
φ = 0
E B n
θ n ( π / 2 , 3 π / 2 )
φ = π + Δ φ
E C n
θ n β
φ = π
R n = r n

Metrics