Abstract

We present a new method to study flow of liquids near solid surface: Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS). Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high numerical aperture oil-immersion objective. The time-resolved fluorescence intensity signals from two laterally shifted observation volumes, created by two confocal pinholes are independently measured. The cross-correlation of these signals provides information of the tracers’ velocities. By changing the evanescent wave penetration depth, flow profiling at distances less than 200 nm from the interface can be performed. Due to the high sensitivity of the method fluorescent species with different size, down to single dye molecules can be used as tracers. We applied this method to study the flow of aqueous electrolyte solutions near a smooth hydrophilic surface and explored the effect of several important parameters, e.g. tracer size, ionic strength, and distance between the observation volumes.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2006).
  2. O. I. Vinogradova, “Slippage of water over hydrophobic surfaces,” Int. J. Miner. Process. 56(1-4), 31–60 (1999).
    [CrossRef]
  3. J. S. Ellis and M. Thompson, “Slip and coupling phenomena at the liquid-solid interface,” PCCP 6, 4928 (2004).
    [CrossRef]
  4. C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005).
    [CrossRef]
  5. E. Lauga, M. P. Brenner, and H. A. Stone, “Microfluidics: The No-Slip Boundary Condition,” in Handbook of Experimental Fluid Dynamics, J. Foss, C. Tropea, and A. Yarin, eds. (Springer, New-York, 2007), pp. 1219–1240.
  6. E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects,” Phys. Rev. Lett. 88(7), 076103 (2002).
    [CrossRef] [PubMed]
  7. R. Stark, E. Bonaccurso, M. Kappl, and H. J. Butt, “Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy,” Polymer (Guildf.) 47(20), 7259–7270 (2006).
    [CrossRef]
  8. G. Sun, E. Bonaccurso, V. Franz, and H.-J. Butt, “Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip,” J. Chem. Phys. 117(22), 10311 (2002).
    [CrossRef]
  9. S. Guriyanova and E. Bonaccurso, “Influence of wettability and surface charge on the interaction between an aqueous electrolyte solution and a solid surface,” Phys. Chem. Chem. Phys. 10(32), 4871–4878 (2008).
    [CrossRef] [PubMed]
  10. F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, “Effective Slip over Superhydrophobic Surfaces in Thin Channels,” Phys. Rev. Lett. 102(2), 026001 (2009).
    [CrossRef] [PubMed]
  11. R. Pit, H. Hervet, and L. Leger, “Direct experimental evidence of slip in hexadecane: solid interfaces,” Phys. Rev. Lett. 85(5), 980–983 (2000).
    [CrossRef] [PubMed]
  12. D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. Fluids 14(3), L9–L12 (2002).
    [CrossRef]
  13. P. Joseph and P. Tabeling, “Direct measurement of the apparent slip length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 035303 (2005).
    [CrossRef] [PubMed]
  14. P. Huang, J. S. Guasto, and K. S. Breuer, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry,” J. Fluid Mech. 566, 447–464 (2006).
    [CrossRef]
  15. C. I. Bouzigues, P. Tabeling, and L. Bocquet, “Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces,” Phys. Rev. Lett. 101(11), 114503 (2008).
    [CrossRef] [PubMed]
  16. L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
    [CrossRef]
  17. R. Rigler, and E. S. Elson, Fluorescence Correlation Spectroscopy (Springer-Verlag, New York, 2001).
  18. D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy. 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
    [CrossRef]
  19. A. Van Orden and R. A. Keller, “Fluorescence correlation spectroscopy for rapid multicomponent analysis in a capillary electrophoresis system,” Anal. Chem. 70(21), 4463–4471 (1998).
    [CrossRef] [PubMed]
  20. R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113(Pt 22), 3921–3930 (2000).
    [PubMed]
  21. M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
    [CrossRef] [PubMed]
  22. M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
    [CrossRef] [PubMed]
  23. P. S. Dittrich and P. Schwille, “Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures,” Anal. Chem. 74(17), 4472–4479 (2002).
    [CrossRef] [PubMed]
  24. D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
    [CrossRef] [PubMed]
  25. O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, “Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation,” Phys. Rev. Lett. 102(11), 118302 (2009).
    [CrossRef] [PubMed]
  26. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
    [CrossRef] [PubMed]
  27. K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005).
    [CrossRef] [PubMed]
  28. J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008).
    [CrossRef] [PubMed]
  29. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991).

2009 (2)

F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, “Effective Slip over Superhydrophobic Surfaces in Thin Channels,” Phys. Rev. Lett. 102(2), 026001 (2009).
[CrossRef] [PubMed]

O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, “Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation,” Phys. Rev. Lett. 102(11), 118302 (2009).
[CrossRef] [PubMed]

2008 (4)

J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008).
[CrossRef] [PubMed]

S. Guriyanova and E. Bonaccurso, “Influence of wettability and surface charge on the interaction between an aqueous electrolyte solution and a solid surface,” Phys. Chem. Chem. Phys. 10(32), 4871–4878 (2008).
[CrossRef] [PubMed]

C. I. Bouzigues, P. Tabeling, and L. Bocquet, “Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces,” Phys. Rev. Lett. 101(11), 114503 (2008).
[CrossRef] [PubMed]

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

2006 (2)

P. Huang, J. S. Guasto, and K. S. Breuer, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry,” J. Fluid Mech. 566, 447–464 (2006).
[CrossRef]

R. Stark, E. Bonaccurso, M. Kappl, and H. J. Butt, “Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy,” Polymer (Guildf.) 47(20), 7259–7270 (2006).
[CrossRef]

2005 (3)

C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005).
[CrossRef]

P. Joseph and P. Tabeling, “Direct measurement of the apparent slip length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 035303 (2005).
[CrossRef] [PubMed]

K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005).
[CrossRef] [PubMed]

2004 (1)

J. S. Ellis and M. Thompson, “Slip and coupling phenomena at the liquid-solid interface,” PCCP 6, 4928 (2004).
[CrossRef]

2003 (1)

D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
[CrossRef] [PubMed]

2002 (4)

P. S. Dittrich and P. Schwille, “Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures,” Anal. Chem. 74(17), 4472–4479 (2002).
[CrossRef] [PubMed]

E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects,” Phys. Rev. Lett. 88(7), 076103 (2002).
[CrossRef] [PubMed]

G. Sun, E. Bonaccurso, V. Franz, and H.-J. Butt, “Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip,” J. Chem. Phys. 117(22), 10311 (2002).
[CrossRef]

D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. Fluids 14(3), L9–L12 (2002).
[CrossRef]

2000 (3)

R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113(Pt 22), 3921–3930 (2000).
[PubMed]

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[CrossRef] [PubMed]

R. Pit, H. Hervet, and L. Leger, “Direct experimental evidence of slip in hexadecane: solid interfaces,” Phys. Rev. Lett. 85(5), 980–983 (2000).
[CrossRef] [PubMed]

1999 (2)

O. I. Vinogradova, “Slippage of water over hydrophobic surfaces,” Int. J. Miner. Process. 56(1-4), 31–60 (1999).
[CrossRef]

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[CrossRef] [PubMed]

1998 (1)

A. Van Orden and R. A. Keller, “Fluorescence correlation spectroscopy for rapid multicomponent analysis in a capillary electrophoresis system,” Anal. Chem. 70(21), 4463–4471 (1998).
[CrossRef] [PubMed]

1984 (1)

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

1978 (1)

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy. 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

Axelrod, D.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Bazant, M. Z.

F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, “Effective Slip over Superhydrophobic Surfaces in Thin Channels,” Phys. Rev. Lett. 102(2), 026001 (2009).
[CrossRef] [PubMed]

Best, A.

O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, “Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation,” Phys. Rev. Lett. 102(11), 118302 (2009).
[CrossRef] [PubMed]

D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
[CrossRef] [PubMed]

Blom, H.

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[CrossRef] [PubMed]

Bocquet, L.

C. I. Bouzigues, P. Tabeling, and L. Bocquet, “Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces,” Phys. Rev. Lett. 101(11), 114503 (2008).
[CrossRef] [PubMed]

Bonaccurso, E.

S. Guriyanova and E. Bonaccurso, “Influence of wettability and surface charge on the interaction between an aqueous electrolyte solution and a solid surface,” Phys. Chem. Chem. Phys. 10(32), 4871–4878 (2008).
[CrossRef] [PubMed]

R. Stark, E. Bonaccurso, M. Kappl, and H. J. Butt, “Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy,” Polymer (Guildf.) 47(20), 7259–7270 (2006).
[CrossRef]

C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005).
[CrossRef]

E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects,” Phys. Rev. Lett. 88(7), 076103 (2002).
[CrossRef] [PubMed]

G. Sun, E. Bonaccurso, V. Franz, and H.-J. Butt, “Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip,” J. Chem. Phys. 117(22), 10311 (2002).
[CrossRef]

Bouzigues, C. I.

C. I. Bouzigues, P. Tabeling, and L. Bocquet, “Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces,” Phys. Rev. Lett. 101(11), 114503 (2008).
[CrossRef] [PubMed]

Breuer, K. S.

P. Huang, J. S. Guasto, and K. S. Breuer, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry,” J. Fluid Mech. 566, 447–464 (2006).
[CrossRef]

Brigo, L.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Brinkmeier, M.

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[CrossRef] [PubMed]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Butt, H. J.

R. Stark, E. Bonaccurso, M. Kappl, and H. J. Butt, “Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy,” Polymer (Guildf.) 47(20), 7259–7270 (2006).
[CrossRef]

Butt, H.-J.

C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005).
[CrossRef]

E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects,” Phys. Rev. Lett. 88(7), 076103 (2002).
[CrossRef] [PubMed]

G. Sun, E. Bonaccurso, V. Franz, and H.-J. Butt, “Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip,” J. Chem. Phys. 117(22), 10311 (2002).
[CrossRef]

Craig, V. S. J.

C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005).
[CrossRef]

dal Zilio, S.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Dittrich, P. S.

P. S. Dittrich and P. Schwille, “Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures,” Anal. Chem. 74(17), 4472–4479 (2002).
[CrossRef] [PubMed]

Dorre, K.

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[CrossRef] [PubMed]

Eigen, M.

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[CrossRef] [PubMed]

Ellis, J. S.

J. S. Ellis and M. Thompson, “Slip and coupling phenomena at the liquid-solid interface,” PCCP 6, 4928 (2004).
[CrossRef]

Elson, E. L.

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy. 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

Evans, D. R.

C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005).
[CrossRef]

Feuillebois, F.

O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, “Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation,” Phys. Rev. Lett. 102(11), 118302 (2009).
[CrossRef] [PubMed]

F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, “Effective Slip over Superhydrophobic Surfaces in Thin Channels,” Phys. Rev. Lett. 102(2), 026001 (2009).
[CrossRef] [PubMed]

D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
[CrossRef] [PubMed]

Fois, G.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Franz, V.

G. Sun, E. Bonaccurso, V. Franz, and H.-J. Butt, “Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip,” J. Chem. Phys. 117(22), 10311 (2002).
[CrossRef]

Gansen, A.

D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
[CrossRef] [PubMed]

Gösch, M.

K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005).
[CrossRef] [PubMed]

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[CrossRef] [PubMed]

Guasto, J. S.

P. Huang, J. S. Guasto, and K. S. Breuer, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry,” J. Fluid Mech. 566, 447–464 (2006).
[CrossRef]

Guriyanova, S.

S. Guriyanova and E. Bonaccurso, “Influence of wettability and surface charge on the interaction between an aqueous electrolyte solution and a solid surface,” Phys. Chem. Chem. Phys. 10(32), 4871–4878 (2008).
[CrossRef] [PubMed]

Hanson, M. R.

R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113(Pt 22), 3921–3930 (2000).
[PubMed]

Hassler, K.

Heino, T.

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[CrossRef] [PubMed]

Hervet, H.

R. Pit, H. Hervet, and L. Leger, “Direct experimental evidence of slip in hexadecane: solid interfaces,” Phys. Rev. Lett. 85(5), 980–983 (2000).
[CrossRef] [PubMed]

Holm, J.

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[CrossRef] [PubMed]

Huang, P.

P. Huang, J. S. Guasto, and K. S. Breuer, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry,” J. Fluid Mech. 566, 447–464 (2006).
[CrossRef]

Joseph, P.

P. Joseph and P. Tabeling, “Direct measurement of the apparent slip length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 035303 (2005).
[CrossRef] [PubMed]

Kappl, M.

R. Stark, E. Bonaccurso, M. Kappl, and H. J. Butt, “Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy,” Polymer (Guildf.) 47(20), 7259–7270 (2006).
[CrossRef]

E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects,” Phys. Rev. Lett. 88(7), 076103 (2002).
[CrossRef] [PubMed]

Keller, R. A.

A. Van Orden and R. A. Keller, “Fluorescence correlation spectroscopy for rapid multicomponent analysis in a capillary electrophoresis system,” Anal. Chem. 70(21), 4463–4471 (1998).
[CrossRef] [PubMed]

Köhler, R. H.

R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113(Pt 22), 3921–3930 (2000).
[PubMed]

Koynov, K.

O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, “Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation,” Phys. Rev. Lett. 102(11), 118302 (2009).
[CrossRef] [PubMed]

Lasser, T.

Leger, L.

R. Pit, H. Hervet, and L. Leger, “Direct experimental evidence of slip in hexadecane: solid interfaces,” Phys. Rev. Lett. 85(5), 980–983 (2000).
[CrossRef] [PubMed]

Leutenegger, M.

Lumma, D.

D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
[CrossRef] [PubMed]

Magde, D.

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy. 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

Mammano, F.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Meinhart, C. D.

D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. Fluids 14(3), L9–L12 (2002).
[CrossRef]

Mistura, G.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Natali, M.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Neto, C.

C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005).
[CrossRef]

Petrov, E. P.

J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008).
[CrossRef] [PubMed]

Pierno, M.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Pit, R.

R. Pit, H. Hervet, and L. Leger, “Direct experimental evidence of slip in hexadecane: solid interfaces,” Phys. Rev. Lett. 85(5), 980–983 (2000).
[CrossRef] [PubMed]

Pozzato, A.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Rädler, J. O.

D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
[CrossRef] [PubMed]

Rao, R.

Ries, J.

J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008).
[CrossRef] [PubMed]

Rigler, P.

Rigler, R.

K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005).
[CrossRef] [PubMed]

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[CrossRef] [PubMed]

Sada, C.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Schwille, P.

J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008).
[CrossRef] [PubMed]

P. S. Dittrich and P. Schwille, “Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures,” Anal. Chem. 74(17), 4472–4479 (2002).
[CrossRef] [PubMed]

R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113(Pt 22), 3921–3930 (2000).
[PubMed]

Stark, R.

R. Stark, E. Bonaccurso, M. Kappl, and H. J. Butt, “Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy,” Polymer (Guildf.) 47(20), 7259–7270 (2006).
[CrossRef]

Stephan, J.

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[CrossRef] [PubMed]

Sun, G.

G. Sun, E. Bonaccurso, V. Franz, and H.-J. Butt, “Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip,” J. Chem. Phys. 117(22), 10311 (2002).
[CrossRef]

Tabeling, P.

C. I. Bouzigues, P. Tabeling, and L. Bocquet, “Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces,” Phys. Rev. Lett. 101(11), 114503 (2008).
[CrossRef] [PubMed]

P. Joseph and P. Tabeling, “Direct measurement of the apparent slip length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 035303 (2005).
[CrossRef] [PubMed]

Thompson, M.

J. S. Ellis and M. Thompson, “Slip and coupling phenomena at the liquid-solid interface,” PCCP 6, 4928 (2004).
[CrossRef]

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Tormen, M.

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Tretheway, D. C.

D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. Fluids 14(3), L9–L12 (2002).
[CrossRef]

Van Orden, A.

A. Van Orden and R. A. Keller, “Fluorescence correlation spectroscopy for rapid multicomponent analysis in a capillary electrophoresis system,” Anal. Chem. 70(21), 4463–4471 (1998).
[CrossRef] [PubMed]

Vinogradova, O. I.

O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, “Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation,” Phys. Rev. Lett. 102(11), 118302 (2009).
[CrossRef] [PubMed]

F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, “Effective Slip over Superhydrophobic Surfaces in Thin Channels,” Phys. Rev. Lett. 102(2), 026001 (2009).
[CrossRef] [PubMed]

D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
[CrossRef] [PubMed]

O. I. Vinogradova, “Slippage of water over hydrophobic surfaces,” Int. J. Miner. Process. 56(1-4), 31–60 (1999).
[CrossRef]

Webb, W. W.

R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113(Pt 22), 3921–3930 (2000).
[PubMed]

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy. 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

Anal. Chem. (4)

A. Van Orden and R. A. Keller, “Fluorescence correlation spectroscopy for rapid multicomponent analysis in a capillary electrophoresis system,” Anal. Chem. 70(21), 4463–4471 (1998).
[CrossRef] [PubMed]

M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000).
[CrossRef] [PubMed]

M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[CrossRef] [PubMed]

P. S. Dittrich and P. Schwille, “Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures,” Anal. Chem. 74(17), 4472–4479 (2002).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Bioeng. (1)

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Biophys. J. (1)

J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008).
[CrossRef] [PubMed]

Biopolymers (1)

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy. 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

Int. J. Miner. Process. (1)

O. I. Vinogradova, “Slippage of water over hydrophobic surfaces,” Int. J. Miner. Process. 56(1-4), 31–60 (1999).
[CrossRef]

J. Cell Sci. (1)

R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113(Pt 22), 3921–3930 (2000).
[PubMed]

J. Chem. Phys. (1)

G. Sun, E. Bonaccurso, V. Franz, and H.-J. Butt, “Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip,” J. Chem. Phys. 117(22), 10311 (2002).
[CrossRef]

J. Fluid Mech. (1)

P. Huang, J. S. Guasto, and K. S. Breuer, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry,” J. Fluid Mech. 566, 447–464 (2006).
[CrossRef]

J. Phys. Condens. Matter (1)

L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008).
[CrossRef]

Opt. Express (1)

PCCP (1)

J. S. Ellis and M. Thompson, “Slip and coupling phenomena at the liquid-solid interface,” PCCP 6, 4928 (2004).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

S. Guriyanova and E. Bonaccurso, “Influence of wettability and surface charge on the interaction between an aqueous electrolyte solution and a solid surface,” Phys. Chem. Chem. Phys. 10(32), 4871–4878 (2008).
[CrossRef] [PubMed]

Phys. Fluids (1)

D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. Fluids 14(3), L9–L12 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

P. Joseph and P. Tabeling, “Direct measurement of the apparent slip length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 035303 (2005).
[CrossRef] [PubMed]

D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, “Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation,” Phys. Rev. Lett. 102(11), 118302 (2009).
[CrossRef] [PubMed]

E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects,” Phys. Rev. Lett. 88(7), 076103 (2002).
[CrossRef] [PubMed]

C. I. Bouzigues, P. Tabeling, and L. Bocquet, “Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces,” Phys. Rev. Lett. 101(11), 114503 (2008).
[CrossRef] [PubMed]

F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, “Effective Slip over Superhydrophobic Surfaces in Thin Channels,” Phys. Rev. Lett. 102(2), 026001 (2009).
[CrossRef] [PubMed]

R. Pit, H. Hervet, and L. Leger, “Direct experimental evidence of slip in hexadecane: solid interfaces,” Phys. Rev. Lett. 85(5), 980–983 (2000).
[CrossRef] [PubMed]

Polymer (Guildf.) (1)

R. Stark, E. Bonaccurso, M. Kappl, and H. J. Butt, “Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy,” Polymer (Guildf.) 47(20), 7259–7270 (2006).
[CrossRef]

Rep. Prog. Phys. (1)

C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005).
[CrossRef]

Other (4)

E. Lauga, M. P. Brenner, and H. A. Stone, “Microfluidics: The No-Slip Boundary Condition,” in Handbook of Experimental Fluid Dynamics, J. Foss, C. Tropea, and A. Yarin, eds. (Springer, New-York, 2007), pp. 1219–1240.

R. Rigler, and E. S. Elson, Fluorescence Correlation Spectroscopy (Springer-Verlag, New York, 2001).

P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2006).

J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the experimental setup. MC – microchannel; BFP – back focal plane; DBS – dichroic beam splitter; M50/50 – 50% beam splitter; EF – emission filter; PH1, PH2 – pinholes; APD1, APD2 – avalanche photo diodes; L1 – tube lens, L2 – collimator lens; M – prism based mirror.

Fig. 2
Fig. 2

Scheme of the TIR-FCCS basic concept. The excitation is done by an evanescent wave. The time-resolved fluorescence signals I 1(t) and I 2(t) from two, laterally shifted in the flow direction, observation volumes are recorded. The cross correlation of these signals yields G(τ).

Fig. 3
Fig. 3

Schematic of the chamber: 1-aluminium support, 2-cover slide (170 µm), 3-spacer layer (100 µm), 4-microscope slide (1 mm), 5-polycarbonate block.

Fig. 4
Fig. 4

Typical cross-correlation curves measured at different penetration depths, for Qdot585 flowing with 0.1 mM aqueous solution of K2HPO4. The inset shows the flow velocities determined from the maximum of the cross-correlation curves vs. penetration depth d p.

Fig. 5
Fig. 5

Flow velocities v(τ M) determined from the maximum of the cross-correlation curves vs. penetration depth d p of the evanescent wave. Measurements were done at three different salt concentrations and in pure water. λD denotes the Debye length of the electrostatic repulsion force. The value of Δs was 1µm and Qdot585 were used as tracers.

Fig. 6
Fig. 6

(a) Cross-correlation curves measured at d p = 200nm using different tracers: () Alexa 514, R H = 0.8 nm; (○) Qdot585, R H = 10 nm, and (Δ) FluoSpheres, R H = 28nm. Electrolyte solutions with high salt concentration (~10mM, K2HPO4) were used to screen the electrostatic repulsion. The separation distance between the observation volumes was 1µm. (b) flow velocities determined from the maximum of the cross-correlation curves vs. penetration depth. The solid line represents the expected flow velocity profile in the case of no boundary slip.

Fig. 7
Fig. 7

(a) Forward, backward and corrected cross-correlation curves measured for Δs = 0.5µm. (b) Corrected cross-correlation curves measured for different values of the distance between the two observation volumes Δs. The inset shows the flow velocities determined from the maximum of the cross-correlation curves plotted vs. Δs. All experiments were done for d p = 100nm using Qdot585 tracers in 6mM aqueous solutions of K2HPO4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d p ( α 1 ) = λ L 4 π n 1 2 sin 2 α 1 n 2 2
G ( τ ) = W 1 ( r ) W 2 ( r ' ) φ ( r , r ' , τ ) d 3 r d 3 r ' W 1 ( r ) C ( r ) d 3 r W 2 ( r ' ) C ( r ' ) d 3 r '

Metrics