Abstract

This paper reports an optofluidic architecture which enables reversible trapping, detection and long term storage of spectrally multiplexed semiconductor quantum dot cocktails in electrokinetically active wells ranging in size from 200nm to 5μm. Here we describe the microfluidic delivery of these cocktails, fabrication method and principal of operation for the wells, and characterize the readout capabilities, storage and erasure speeds, internal spatial signal uniformity and potential storage density of the devices. We report storage and erase speeds of less than 153ms and 30ms respectively and the ability to provide 6-bit storage in a single 200nm well through spectral and intensity multiplexing. Furthermore, we present a novel method for enabling passive long term storage of the quantum dots in the wells by transporting them through an agarose gel matrix. We envision that this technique could find eventual application in fluidic memory or display devices.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Vlassiouk and Z. S. Siwy, “Nanofluidic diode,” Nano Lett. 7(3), 552–556 (2007).
    [CrossRef] [PubMed]
  2. T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
    [CrossRef] [PubMed]
  3. A. Groisman, M. Enzelberger, and S. R. Quake, “Microfluidic memory and control devices,” Science 300(5621), 955–958 (2003).
    [CrossRef] [PubMed]
  4. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
    [CrossRef] [PubMed]
  5. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
    [CrossRef]
  6. L. Dhar, K. Curtis, and T. Facke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
    [CrossRef]
  7. H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic data storage (Springer, Berlin, 2000).
  8. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  9. D. Burgreen and F. R. Nakache, “Electrokinetic flow in ultrafine capillary slits,” J. Phys. Chem. 68(5), 1084–1091 (1964).
    [CrossRef]
  10. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006).
    [CrossRef] [PubMed]
  11. M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
    [CrossRef]
  12. Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
    [CrossRef]
  13. J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
    [CrossRef]
  14. A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, “Thin, lightweight, foldable thermochromic displays on paper,” Lab Chip 9(19), 2775 (2009).
    [CrossRef] [PubMed]
  15. J. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86(15), 153116 (2005).
    [CrossRef]
  16. M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009).
    [CrossRef]
  17. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  18. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  19. B. Cordovez, D. Psaltis, and D. Erickson, “Trapping and storage of particles in electroactive microwells,” Appl. Phys. Lett. 90(2), 024102 (2007).
    [CrossRef]
  20. A. K. Gooding, D. E. Gómez, and P. Mulvaney, “The effects of electron and hole injection on the photoluminescence of CdSe/CdS/ZnS nanocrystal monolayers,” ACS Nano 2(4), 669–676 (2008).
    [CrossRef] [PubMed]
  21. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
    [CrossRef] [PubMed]
  22. D. Erickson, “Spectrographic microfluidic memory,” in Proc. ICMM(Canada, 2005).
  23. M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001).
    [CrossRef] [PubMed]
  24. S. Chang, M. Zhou, and C. Grover, “Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification,” Opt. Express 12(1), 143–148 (2004).
    [CrossRef] [PubMed]
  25. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009).
    [CrossRef] [PubMed]
  26. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  27. C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).
  28. J. Narayanan, J.-Y. Xiong, and X.-Y. Liu, “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques,” Journal of Physics: Conference Series 28, 83–86 (2006).
    [CrossRef]

2009 (5)

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, “Thin, lightweight, foldable thermochromic displays on paper,” Lab Chip 9(19), 2775 (2009).
[CrossRef] [PubMed]

M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009).
[CrossRef] [PubMed]

2008 (4)

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

A. K. Gooding, D. E. Gómez, and P. Mulvaney, “The effects of electron and hole injection on the photoluminescence of CdSe/CdS/ZnS nanocrystal monolayers,” ACS Nano 2(4), 669–676 (2008).
[CrossRef] [PubMed]

L. Dhar, K. Curtis, and T. Facke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[CrossRef]

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

2007 (5)

I. Vlassiouk and Z. S. Siwy, “Nanofluidic diode,” Nano Lett. 7(3), 552–556 (2007).
[CrossRef] [PubMed]

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

B. Cordovez, D. Psaltis, and D. Erickson, “Trapping and storage of particles in electroactive microwells,” Appl. Phys. Lett. 90(2), 024102 (2007).
[CrossRef]

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

2006 (3)

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006).
[CrossRef] [PubMed]

J. Narayanan, J.-Y. Xiong, and X.-Y. Liu, “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques,” Journal of Physics: Conference Series 28, 83–86 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86(15), 153116 (2005).
[CrossRef]

2004 (1)

2003 (1)

A. Groisman, M. Enzelberger, and S. R. Quake, “Microfluidic memory and control devices,” Science 300(5621), 955–958 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
[CrossRef]

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001).
[CrossRef] [PubMed]

1998 (1)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

1992 (1)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

1964 (1)

D. Burgreen and F. R. Nakache, “Electrokinetic flow in ultrafine capillary slits,” J. Phys. Chem. 68(5), 1084–1091 (1964).
[CrossRef]

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Burgreen, D.

D. Burgreen and F. R. Nakache, “Electrokinetic flow in ultrafine capillary slits,” J. Phys. Chem. 68(5), 1084–1091 (1964).
[CrossRef]

Chang, C. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Chang, S.

Chen, C.

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Clapp, L.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Cordovez, B.

B. Cordovez, D. Psaltis, and D. Erickson, “Trapping and storage of particles in electroactive microwells,” Appl. Phys. Lett. 90(2), 024102 (2007).
[CrossRef]

Cui, R.

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Curtis, K.

L. Dhar, K. Curtis, and T. Facke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[CrossRef]

Dhar, L.

L. Dhar, K. Curtis, and T. Facke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Dulkeith, E.

M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Emery, T.

Enzelberger, M.

A. Groisman, M. Enzelberger, and S. R. Quake, “Microfluidic memory and control devices,” Science 300(5621), 955–958 (2003).
[CrossRef] [PubMed]

Erickson, D.

B. Cordovez, D. Psaltis, and D. Erickson, “Trapping and storage of particles in electroactive microwells,” Appl. Phys. Lett. 90(2), 024102 (2007).
[CrossRef]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006).
[CrossRef] [PubMed]

Facke, T.

L. Dhar, K. Curtis, and T. Facke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[CrossRef]

Feldmann, J.

M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
[CrossRef]

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Gao, M. Y.

M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
[CrossRef]

Gao, X. H.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001).
[CrossRef] [PubMed]

Gaponik, N.

M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
[CrossRef]

Gau, V.

M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009).
[CrossRef]

Gershenfeld, N.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Gómez, D. E.

A. K. Gooding, D. E. Gómez, and P. Mulvaney, “The effects of electron and hole injection on the photoluminescence of CdSe/CdS/ZnS nanocrystal monolayers,” ACS Nano 2(4), 669–676 (2008).
[CrossRef] [PubMed]

Gooding, A. K.

A. K. Gooding, D. E. Gómez, and P. Mulvaney, “The effects of electron and hole injection on the photoluminescence of CdSe/CdS/ZnS nanocrystal monolayers,” ACS Nano 2(4), 669–676 (2008).
[CrossRef] [PubMed]

Groisman, A.

A. Groisman, M. Enzelberger, and S. R. Quake, “Microfluidic memory and control devices,” Science 300(5621), 955–958 (2003).
[CrossRef] [PubMed]

Grover, C.

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Haake, D. A.

M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009).
[CrossRef]

Han, M. Y.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001).
[CrossRef] [PubMed]

Heikenfeld, J.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Huang, B. H.

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Im, H.

Jiang, P.

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Jones, R. J.

Kobyakov, A.

Kreit, E.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Lemmer, U.

M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
[CrossRef]

Lesuffleur, A.

Li, J.

J. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86(15), 153116 (2005).
[CrossRef]

Li, L. S.

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

Li, Y. F.

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

Liao, J. C.

M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009).
[CrossRef]

Lindquist, N. C.

Liu, S. L.

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Liu, X.-Y.

J. Narayanan, J.-Y. Xiong, and X.-Y. Liu, “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques,” Journal of Physics: Conference Series 28, 83–86 (2006).
[CrossRef]

Liu, Z. W.

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Maerkl, S. J.

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[CrossRef] [PubMed]

Mansuripur, M.

Milarcik, A.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Moloney, J. V.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Mulvaney, P.

A. K. Gooding, D. E. Gómez, and P. Mulvaney, “The effects of electron and hole injection on the photoluminescence of CdSe/CdS/ZnS nanocrystal monolayers,” ACS Nano 2(4), 669–676 (2008).
[CrossRef] [PubMed]

Nakache, F. R.

D. Burgreen and F. R. Nakache, “Electrokinetic flow in ultrafine capillary slits,” J. Phys. Chem. 68(5), 1084–1091 (1964).
[CrossRef]

Narayanan, J.

J. Narayanan, J.-Y. Xiong, and X.-Y. Liu, “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques,” Journal of Physics: Conference Series 28, 83–86 (2006).
[CrossRef]

Nie, S.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001).
[CrossRef] [PubMed]

Oh, S.-H.

Pang, D. W.

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Peng, N.

J. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86(15), 153116 (2005).
[CrossRef]

Phillips, S. T.

A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, “Thin, lightweight, foldable thermochromic displays on paper,” Lab Chip 9(19), 2775 (2009).
[CrossRef] [PubMed]

Prakash, M.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Psaltis, D.

B. Cordovez, D. Psaltis, and D. Erickson, “Trapping and storage of particles in electroactive microwells,” Appl. Phys. Lett. 90(2), 024102 (2007).
[CrossRef]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

A. Groisman, M. Enzelberger, and S. R. Quake, “Microfluidic memory and control devices,” Science 300(5621), 955–958 (2003).
[CrossRef] [PubMed]

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[CrossRef] [PubMed]

Raj, B.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Rockwood, T.

Scherer, A.

Schwartz, R.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Siegel, A. C.

A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, “Thin, lightweight, foldable thermochromic displays on paper,” Lab Chip 9(19), 2775 (2009).
[CrossRef] [PubMed]

Sin, M. L. Y.

M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009).
[CrossRef]

Siwy, Z. S.

I. Vlassiouk and Z. S. Siwy, “Nanofluidic diode,” Nano Lett. 7(3), 552–556 (2007).
[CrossRef] [PubMed]

Su, J. Z.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001).
[CrossRef] [PubMed]

Sun, B.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Sun, J. Q.

M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
[CrossRef]

Sun, Q.

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

Thorsen, T.

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[CrossRef] [PubMed]

Tian, Z. Q.

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Vlassiouk, I.

I. Vlassiouk and Z. S. Siwy, “Nanofluidic diode,” Nano Lett. 7(3), 552–556 (2007).
[CrossRef] [PubMed]

Wang, D. Y.

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

Wang, Y. A.

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Whitesides, G. M.

A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, “Thin, lightweight, foldable thermochromic displays on paper,” Lab Chip 9(19), 2775 (2009).
[CrossRef] [PubMed]

Wiley, B. J.

A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, “Thin, lightweight, foldable thermochromic displays on paper,” Lab Chip 9(19), 2775 (2009).
[CrossRef] [PubMed]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Wong, P. K.

M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009).
[CrossRef]

Xiong, J.-Y.

J. Narayanan, J.-Y. Xiong, and X.-Y. Liu, “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques,” Journal of Physics: Conference Series 28, 83–86 (2006).
[CrossRef]

Xu, J.

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, C. H.

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

Yang, S.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Zakharian, A. R.

Zhang, Q.

J. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86(15), 153116 (2005).
[CrossRef]

Zhang, X.

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Zhang, Z. L.

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Zhou, K.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Zhou, M.

Zhu, Q.

J. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86(15), 153116 (2005).
[CrossRef]

Zhu, T.

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

A. K. Gooding, D. E. Gómez, and P. Mulvaney, “The effects of electron and hole injection on the photoluminescence of CdSe/CdS/ZnS nanocrystal monolayers,” ACS Nano 2(4), 669–676 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

J. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86(15), 153116 (2005).
[CrossRef]

B. Cordovez, D. Psaltis, and D. Erickson, “Trapping and storage of particles in electroactive microwells,” Appl. Phys. Lett. 90(2), 024102 (2007).
[CrossRef]

J. Phys. Chem. (1)

D. Burgreen and F. R. Nakache, “Electrokinetic flow in ultrafine capillary slits,” J. Phys. Chem. 68(5), 1084–1091 (1964).
[CrossRef]

J. Phys. Chem. C (2)

M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009).
[CrossRef]

C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).

Journal of Physics: Conference Series (1)

J. Narayanan, J.-Y. Xiong, and X.-Y. Liu, “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques,” Journal of Physics: Conference Series 28, 83–86 (2006).
[CrossRef]

Lab Chip (1)

A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, “Thin, lightweight, foldable thermochromic displays on paper,” Lab Chip 9(19), 2775 (2009).
[CrossRef] [PubMed]

Langmuir (1)

M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002).
[CrossRef]

Nano Lett. (1)

I. Vlassiouk and Z. S. Siwy, “Nanofluidic diode,” Nano Lett. 7(3), 552–556 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001).
[CrossRef] [PubMed]

Nat. Mater. (1)

X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Nat. Photonics (4)

L. Dhar, K. Curtis, and T. Facke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[CrossRef]

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009).
[CrossRef]

Nature (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Science (4)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[CrossRef] [PubMed]

A. Groisman, M. Enzelberger, and S. R. Quake, “Microfluidic memory and control devices,” Science 300(5621), 955–958 (2003).
[CrossRef] [PubMed]

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Other (2)

H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic data storage (Springer, Berlin, 2000).

D. Erickson, “Spectrographic microfluidic memory,” in Proc. ICMM(Canada, 2005).

Supplementary Material (4)

» Media 1: MOV (2664 KB)     
» Media 2: MOV (2737 KB)     
» Media 3: MOV (815 KB)     
» Media 4: PDF (1131 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optofluidic Storage of Quantum Dots in Electrokinetically Active Micro- and Nanowells. (Media 1) (a) Quantum Dot (Q Dot) cocktails are delivered by pressure driven flow to an array of electrokinetically active 200nm diameter nanowells. During writing an electrokinetic attraction voltage is applied between the upper surface and the bottom of the nanowell which attracts the QDots into a well as shown in (b). During reading the QDots are optically excited and their emission signal is captured through a fiber spectrometer. (b) Erasing is done simply by reversing the polarity and rejecting the code from the well.

Fig. 2
Fig. 2

Electroactive Nanowells during (a) Electrokinetic Attraction of 4nM solution of 655nm Qdots by applying a 0.8V potential. (b) Repulsion Mode (c) Optical close up of a 2x2 section of the electroactive nanowell array. (Media 2) The top right well is the one shown in (a) and (b). (d) SEM of the 200nm diameter electroactive well, 1μm in depth.

Fig. 3
Fig. 3

(a) Spectrographic readout of simple QDot packets from the electroactive nanowells. Four different codes are shown each consisting of a combination of quantum dot with a central emission wavelength of 525m, 605nm and 705nm. The concentration of the 605nm species was increased in equal amounts from 10nM to 40nM, while the 605nm and 705nm species were held constant. After reading and erasing each bit, it is flushed and the next bit solution is introduced for data readout. (b) Mean fluorescent excitation history in electroactive nanowell during two attraction/storage/repulsion steps. The marks indicate the time in which the polarity of the applied field is switched. Inset shows the fit to the equation a(1-exp(-t/τ)).

Fig. 4
Fig. 4

Large electroactive microwell during (a-b) Attraction and rejection of a mixture containing 3 nM 705nm with 6nM 605nm emitting QDots (c) Radial distribution of fluorescent intensity inside microwell. The cocktail used here contained 3 nM 705nm with 6nM 605nm emitting QDots at pH = 8.3. This solution was delivered to the well at an average flow speed of 40μm/s and then trapped by applying a 0.8V potential (Media 3).

Fig. 9
Fig. 9

Spectrographic Code read in electroactive microwell setting shown in Fig. 4(a).

Fig. 10
Fig. 10

Mean fluorescent intensity vs. time trace for electroactive microwell shown in Fig. 4.

Fig. 5
Fig. 5

Attraction time scales vs. mean channel velocity. The time scale data was obtained by performing exponential fits to the time intensity data. The red linear fit is made for the 200nm electroactive well data while the blue linear fit in the inset displays the trend for the 5 μm well data.

Fig. 6
Fig. 6

(a) Non-volatile storage device schematic (x-section view). QDots are trapped in the wells and through the nanoscale pores of the gel (b) SEM of gel covered microwell for a 1% w/v coating.

Fig. 11
Fig. 11

SEM of the cross section of the electroactive microwell geometry previous to chrome layer etching. This alternative method is chosen due to ease of use and reduction of fabrication steps.

Fig. 7
Fig. 7

Mean fluorescent excitation history in an electroactive microwell with gel coatings at various agarose concentrations during a sequence of attraction and repulsion steps.

Fig. 8
Fig. 8

Fluorescent signal retention history as in an electroactive microwell with gel coatings at various agarose concentrations. A 1V potential is applied at the 180 second mark and instantaneously switched off.

Fig. 12
Fig. 12

Homogeneous data packet is being separated into its constituent red, yellow and green colors using capillary electrophoresis. Smaller sized quantum dots migrate faster downstream than the larger ones, suggesting that after bit erasure one could separate a data packet into its fundamental parts for reuse

Tables (1)

Tables Icon

Table 1 Time Scale Summary of Microwell Traps

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N = log 2 ( I M 1 )

Metrics