Abstract

Microstructuring of Ti plates with femtosecond laser pulses is investigated in three different liquids. In these ambiences, complex microstructures with voids and islands are produced on the sample surfaces, whose feature sizes are controlled by the laser parameters. Through adopting supersaturated Hydroxyapatite suspension with higher incident laser fluences, it is for the first time to observe the firm deposition of biocompatible elements Ca-P on the microstructures. At lower laser fluence, only porous structure is present but without additional elements deposition. Both plasma-related ablation under the confinement of liquids and micro-bubbles striking are employed to discuss such structures formation. Tight combining elements Ca-P onto the structured surfaces provide a new way to improve the biocompatibility of body-embedded devices.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
    [CrossRef] [PubMed]
  2. G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
    [CrossRef] [PubMed]
  3. W. Q. Han, L. Wu, R. F. Klie, and Y. Zhu, “Enhanced optical absorption induced by dense nanocavities inside titania nanorods,” Adv. Mater. 19(18), 2525–2529 (2007).
    [CrossRef]
  4. Y. B. Gerbig, S. I. U. Ahmed, D. G. Chetwynd, and H. Haefke, “Topography-related effects on the lubrication of nanostructured hard surfaces,” Tribol. Int. 39(9), 945–952 (2006).
    [CrossRef]
  5. T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials 25(19), 4731–4739 (2004).
    [CrossRef] [PubMed]
  6. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [CrossRef]
  7. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006).
    [CrossRef] [PubMed]
  8. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
    [CrossRef] [PubMed]
  9. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
    [CrossRef]
  10. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  11. F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser- melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
    [CrossRef]
  12. P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
    [CrossRef]
  13. M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
    [CrossRef]
  14. Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
    [CrossRef]
  15. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
    [CrossRef]
  16. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
    [CrossRef]
  17. M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
    [CrossRef]
  18. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
    [CrossRef] [PubMed]
  19. K. Katayama, H. Yonekubo, and T. Sawada, “Formation of ring patterns surrounded by ripples by single- shot laser irradiation with ultrashort pulse width at the solid/liquid interface,” Appl. Phys. Lett. 82(24), 4244–4246 (2003).
    [CrossRef]
  20. G. Daminelli, J. Kruger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
    [CrossRef]
  21. T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
    [CrossRef]
  22. S. Bharati, M. K. Sinha, and D. Basu, “Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF,” Bull. Mater. Sci. 28(6), 617–621 (2005).
    [CrossRef]
  23. X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004).
    [CrossRef] [PubMed]
  24. C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
    [CrossRef]
  25. J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
    [CrossRef]
  26. R. M. Tilaki, A. Irajizad, and S. M. Mahdava, “The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation,” J. Nanopart. Res. 9(5), 853–860 (2007).
    [CrossRef]
  27. D. Grojo, J. Hermann, and A. Perrone, “Plasma analyses during femtosecond laser ablation of Ti, Zr, and Hf,” J. Appl. Phys. 97(6), 063306 (2005).
    [CrossRef]
  28. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
    [CrossRef] [PubMed]
  29. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  30. J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
    [CrossRef]
  31. P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, “Formation of periodic structures by laser ablation of metals in liquids,” Appl. Surf. Sci. 252(13), 4457–4461 (2006).
    [CrossRef]

2008 (4)

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[CrossRef] [PubMed]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

2007 (7)

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

R. M. Tilaki, A. Irajizad, and S. M. Mahdava, “The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation,” J. Nanopart. Res. 9(5), 853–860 (2007).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[CrossRef] [PubMed]

W. Q. Han, L. Wu, R. F. Klie, and Y. Zhu, “Enhanced optical absorption induced by dense nanocavities inside titania nanorods,” Adv. Mater. 19(18), 2525–2529 (2007).
[CrossRef]

Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
[CrossRef] [PubMed]

2006 (3)

Y. B. Gerbig, S. I. U. Ahmed, D. G. Chetwynd, and H. Haefke, “Topography-related effects on the lubrication of nanostructured hard surfaces,” Tribol. Int. 39(9), 945–952 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006).
[CrossRef] [PubMed]

P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, “Formation of periodic structures by laser ablation of metals in liquids,” Appl. Surf. Sci. 252(13), 4457–4461 (2006).
[CrossRef]

2005 (4)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

D. Grojo, J. Hermann, and A. Perrone, “Plasma analyses during femtosecond laser ablation of Ti, Zr, and Hf,” J. Appl. Phys. 97(6), 063306 (2005).
[CrossRef]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[CrossRef]

S. Bharati, M. K. Sinha, and D. Basu, “Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF,” Bull. Mater. Sci. 28(6), 617–621 (2005).
[CrossRef]

2004 (5)

X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004).
[CrossRef] [PubMed]

G. Daminelli, J. Kruger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials 25(19), 4731–4739 (2004).
[CrossRef] [PubMed]

2003 (3)

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

K. Katayama, H. Yonekubo, and T. Sawada, “Formation of ring patterns surrounded by ripples by single- shot laser irradiation with ultrashort pulse width at the solid/liquid interface,” Appl. Phys. Lett. 82(24), 4244–4246 (2003).
[CrossRef]

2000 (1)

T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[CrossRef]

1998 (2)

J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

1982 (1)

F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser- melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
[CrossRef]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Ahmed, S. I. U.

Y. B. Gerbig, S. I. U. Ahmed, D. G. Chetwynd, and H. Haefke, “Topography-related effects on the lubrication of nanostructured hard surfaces,” Tribol. Int. 39(9), 945–952 (2006).
[CrossRef]

Aparicio, C.

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

Bai, Y. H.

F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser- melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
[CrossRef]

Basu, D.

S. Bharati, M. K. Sinha, and D. Basu, “Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF,” Bull. Mater. Sci. 28(6), 617–621 (2005).
[CrossRef]

Bharati, S.

S. Bharati, M. K. Sinha, and D. Basu, “Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF,” Bull. Mater. Sci. 28(6), 617–621 (2005).
[CrossRef]

Bhardwaj, V. R.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

Chen, J.

X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004).
[CrossRef] [PubMed]

Chen, X.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Chetwynd, D. G.

Y. B. Gerbig, S. I. U. Ahmed, D. G. Chetwynd, and H. Haefke, “Topography-related effects on the lubrication of nanostructured hard surfaces,” Tribol. Int. 39(9), 945–952 (2006).
[CrossRef]

Conde, F.

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

Corkum, P. B.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Crouch, C.

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Daminelli, G.

G. Daminelli, J. Kruger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Ejiofor, J. U.

T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials 25(19), 4731–4739 (2004).
[CrossRef] [PubMed]

Fang, R.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

Geis-Gerstorfer, J.

X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004).
[CrossRef] [PubMed]

Gerbig, Y. B.

Y. B. Gerbig, S. I. U. Ahmed, D. G. Chetwynd, and H. Haefke, “Topography-related effects on the lubrication of nanostructured hard surfaces,” Tribol. Int. 39(9), 945–952 (2006).
[CrossRef]

Gertsvolf, M.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Gil, F. J.

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

Grojo, D.

D. Grojo, J. Hermann, and A. Perrone, “Plasma analyses during femtosecond laser ablation of Ti, Zr, and Hf,” J. Appl. Phys. 97(6), 063306 (2005).
[CrossRef]

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006).
[CrossRef] [PubMed]

Haefke, H.

Y. B. Gerbig, S. I. U. Ahmed, D. G. Chetwynd, and H. Haefke, “Topography-related effects on the lubrication of nanostructured hard surfaces,” Tribol. Int. 39(9), 945–952 (2006).
[CrossRef]

Hammer, D.

J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Han, W. Q.

W. Q. Han, L. Wu, R. F. Klie, and Y. Zhu, “Enhanced optical absorption induced by dense nanocavities inside titania nanorods,” Adv. Mater. 19(18), 2525–2529 (2007).
[CrossRef]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Hermann, J.

D. Grojo, J. Hermann, and A. Perrone, “Plasma analyses during femtosecond laser ablation of Ti, Zr, and Hf,” J. Appl. Phys. 97(6), 063306 (2005).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Hnatovsky, C.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Hunt, N. T.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[CrossRef] [PubMed]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Irajizad, A.

R. M. Tilaki, A. Irajizad, and S. M. Mahdava, “The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation,” J. Nanopart. Res. 9(5), 853–860 (2007).
[CrossRef]

Iwanaga, S.

T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[CrossRef]

Kabashin, A. V.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[CrossRef]

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Katayama, K.

K. Katayama, H. Yonekubo, and T. Sawada, “Formation of ring patterns surrounded by ripples by single- shot laser irradiation with ultrashort pulse width at the solid/liquid interface,” Appl. Phys. Lett. 82(24), 4244–4246 (2003).
[CrossRef]

Kautek, W.

G. Daminelli, J. Kruger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

Kazakevich, P. V.

P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, “Formation of periodic structures by laser ablation of metals in liquids,” Appl. Surf. Sci. 252(13), 4457–4461 (2006).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Keilmann, F.

F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser- melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
[CrossRef]

Klie, R. F.

W. Q. Han, L. Wu, R. F. Klie, and Y. Zhu, “Enhanced optical absorption induced by dense nanocavities inside titania nanorods,” Adv. Mater. 19(18), 2525–2529 (2007).
[CrossRef]

Kruger, J.

G. Daminelli, J. Kruger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

Kuang, D.

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

Liang, C.

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[CrossRef] [PubMed]

Liao, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

Ma, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Mahdava, S. M.

R. M. Tilaki, A. Irajizad, and S. M. Mahdava, “The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation,” J. Nanopart. Res. 9(5), 853–860 (2007).
[CrossRef]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

Malzer, S.

Manero, J. M.

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

Matsunawa, A.

T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[CrossRef]

Mazur, E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Meunier, M.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Noojin, G.

J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Ogata, Y. H.

T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[CrossRef]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Pegueroles, M.

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

Perrone, A.

D. Grojo, J. Hermann, and A. Perrone, “Plasma analyses during femtosecond laser ablation of Ti, Zr, and Hf,” J. Appl. Phys. 97(6), 063306 (2005).
[CrossRef]

Planell, J. A.

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Rajeev, P. P.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Rayner, D. M.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Reichl, R.

X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004).
[CrossRef] [PubMed]

Rockwell, B.

J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Sacher, E.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[CrossRef]

Sakka, T.

T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[CrossRef]

Sawada, T.

K. Katayama, H. Yonekubo, and T. Sawada, “Formation of ring patterns surrounded by ripples by single- shot laser irradiation with ultrashort pulse width at the solid/liquid interface,” Appl. Phys. Lett. 82(24), 4244–4246 (2003).
[CrossRef]

Scheideler, L.

X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004).
[CrossRef] [PubMed]

Shafeev, G. A.

P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, “Formation of periodic structures by laser ablation of metals in liquids,” Appl. Surf. Sci. 252(13), 4457–4461 (2006).
[CrossRef]

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Simakin, A. V.

P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, “Formation of periodic structures by laser ablation of metals in liquids,” Appl. Surf. Sci. 252(13), 4457–4461 (2006).
[CrossRef]

Simova, E.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Sinha, M. K.

S. Bharati, M. K. Sinha, and D. Basu, “Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF,” Bull. Mater. Sci. 28(6), 617–621 (2005).
[CrossRef]

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Sylvestre, J. P.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[CrossRef]

Takemoto, T.

T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[CrossRef]

Taylor, R. S.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Tilaki, R. M.

R. M. Tilaki, A. Irajizad, and S. M. Mahdava, “The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation,” J. Nanopart. Res. 9(5), 853–860 (2007).
[CrossRef]

Vallet-Regí, M.

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006).
[CrossRef] [PubMed]

Wang, H.

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[CrossRef] [PubMed]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

Wang, K.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Wang, L. J.

Webster, T. J.

T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials 25(19), 4731–4739 (2004).
[CrossRef] [PubMed]

Welsh, G. H.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[CrossRef] [PubMed]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Wu, L.

W. Q. Han, L. Wu, R. F. Klie, and Y. Zhu, “Enhanced optical absorption induced by dense nanocavities inside titania nanorods,” Adv. Mater. 19(18), 2525–2529 (2007).
[CrossRef]

Wu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Wynne, K.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[CrossRef] [PubMed]

Yang, J.

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[CrossRef] [PubMed]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

Yang, Y.

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[CrossRef] [PubMed]

Yonekubo, H.

K. Katayama, H. Yonekubo, and T. Sawada, “Formation of ring patterns surrounded by ripples by single- shot laser irradiation with ultrashort pulse width at the solid/liquid interface,” Appl. Phys. Lett. 82(24), 4244–4246 (2003).
[CrossRef]

Yu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Zhao, Q. Z.

Zhu, X.

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

Zhu, X. L.

X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004).
[CrossRef] [PubMed]

Zhu, Y.

W. Q. Han, L. Wu, R. F. Klie, and Y. Zhu, “Enhanced optical absorption induced by dense nanocavities inside titania nanorods,” Adv. Mater. 19(18), 2525–2529 (2007).
[CrossRef]

Adv. Mater. (1)

W. Q. Han, L. Wu, R. F. Klie, and Y. Zhu, “Enhanced optical absorption induced by dense nanocavities inside titania nanorods,” Adv. Mater. 19(18), 2525–2529 (2007).
[CrossRef]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett. (5)

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[CrossRef]

K. Katayama, H. Yonekubo, and T. Sawada, “Formation of ring patterns surrounded by ripples by single- shot laser irradiation with ultrashort pulse width at the solid/liquid interface,” Appl. Phys. Lett. 82(24), 4244–4246 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[CrossRef]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008).
[CrossRef]

F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser- melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982).
[CrossRef]

Appl. Surf. Sci. (1)

P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, “Formation of periodic structures by laser ablation of metals in liquids,” Appl. Surf. Sci. 252(13), 4457–4461 (2006).
[CrossRef]

Biomaterials (2)

T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials 25(19), 4731–4739 (2004).
[CrossRef] [PubMed]

X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004).
[CrossRef] [PubMed]

Bull. Mater. Sci. (1)

S. Bharati, M. K. Sinha, and D. Basu, “Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF,” Bull. Mater. Sci. 28(6), 617–621 (2005).
[CrossRef]

J. Appl. Phys. (4)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998).
[CrossRef]

D. Grojo, J. Hermann, and A. Perrone, “Plasma analyses during femtosecond laser ablation of Ti, Zr, and Hf,” J. Appl. Phys. 97(6), 063306 (2005).
[CrossRef]

J. Biomed. Mater. Res. A (1)

C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007).
[CrossRef]

J. Chem. Phys. (1)

T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[CrossRef]

J. Nanopart. Res. (1)

R. M. Tilaki, A. Irajizad, and S. M. Mahdava, “The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation,” J. Nanopart. Res. 9(5), 853–860 (2007).
[CrossRef]

J. Phys. At. Mol. Opt. Phys. (1)

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007).
[CrossRef]

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Thin Solid Films (1)

G. Daminelli, J. Kruger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

Tribol. Int. (1)

Y. B. Gerbig, S. I. U. Ahmed, D. G. Chetwynd, and H. Haefke, “Topography-related effects on the lubrication of nanostructured hard surfaces,” Tribol. Int. 39(9), 945–952 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram for microstructuring of Ti plates with femtosecond lasers in liquids.

Fig. 2
Fig. 2

Surface morphologies induced by femtosecond laser with different fluences at variation of the scan speeds in distilled water. The scale bar that applied to all six pictures is 5 μm.

Fig. 3
Fig. 3

Measured sizes of micro-voids (a), and densities of micro-islands (b) as a function of the number of partially overlapped laser shots or the scan speed for two different laser fluences, when the Ti plate was irradiated by femtosecond lasers in distilled water.

Fig. 4
Fig. 4

SEM pictures of microstrutures on the Ti plate produced in supersaturated HA suspension with the concentration of 0.02 g/ml by femtosecond laser with energy fluence of (a) 9.9 J/cm2 and (b) 3.3 J/cm2.

Fig. 5
Fig. 5

Porous surface microstructure formation on the Ti plate sample in HA solution with the larger concentration of 0.04 g/ml by femtosecond laser with fluence of 3.3 J/cm2.

Fig. 6
Fig. 6

Surface microstructuring of the Ti plate in the mixture solution of CaCl2 and Na3PO4 with concentration of 0.018 g/ml by femtosecond laser fluence of (a) 9.9 J/cm2 and (b) 3.3 J/cm2.

Fig. 7
Fig. 7

EDX (a) and XRD (b) measurement results for the micro-islands (9.9 J/cm2, green curve) and micro-cavities (3.3 J/cm2, red curve) surface structures shown in Fig. 4, respectively.

Metrics