Abstract

We report on a novel optical thin film material, erbium-doped deuterated amorphous carbon, fabricated directly on silicon substrate at room-temperature via controlled thermal evaporation of a Metal-Organic compound in a Plasma-Enhanced Chemical Vapour Deposition (MO-PECVD) system. High erbium concentrations (up to 2.3 at.%) and room-temperature photoluminescence at 1.54 μm are successfully demonstrated. Concentration quenching due to erbium clustering is reduced by adopting an appropriate MO precursor—Er(tmhd)3. Another quenching mechanism, caused by non-radiative C-H and O-H vibrational transitions, is shown for the first time to be significantly reduced by deuteration instead of hydrogenation of amorphous carbon. Our results suggest that erbium-doped deuterated amorphous carbon is a promising new class of photonic material for silicon-compatible optoelectronics applications in the technologically important 1.5μm wavelength region.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
    [CrossRef]
  2. M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
    [CrossRef]
  3. J. Lee, J. H. Shin, and N. Park, “Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs,” J. Lightwave Technol. 23(1), 19–25 (2005).
    [CrossRef]
  4. V. Toccafondo, F. Di Pasquale, S. Faralli, N. Daldosso, L. Pavesi, and H. E. Hernandez-Figueroa, “Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs,” Opt. Express 15(22), 14907–14913 (2007).
    [CrossRef] [PubMed]
  5. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
    [CrossRef]
  6. R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
    [CrossRef]
  7. M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001).
    [CrossRef]
  8. M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
    [CrossRef]
  9. A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
    [CrossRef]
  10. R. Clergereaux, D. Escaich, S. Martin, P. Raynaud, and F. Gaillard, “Carbon Layer as a New Material for Optics,” in New Materials for Microphotonics, edited by J. H. Shin, M. Brongersma, C. Buchal, and F. Priolo (Mater. Res. Soc. Symp. Proc. 817, Warrendale, PA, 2004), paper L6.23.
  11. L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
    [CrossRef]
  12. Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
    [CrossRef]
  13. J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
    [CrossRef]
  14. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
    [CrossRef]
  15. F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
    [CrossRef]
  16. V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
    [CrossRef]
  17. G. A. Crosby and M. Kasha, “Intramolecular energy transfer in ytterbium organic chelates,” Spectrochim. Acta [A] 10, 377–382 (1958).
  18. R. E. Whan and G. A. Crosby, “Luminescence studies of rare earth complexes: Benzoylacetonate and dibenzoylmethide chelates,” J. Mol. Spectrosc. 8(1-6), 315–327 (1962).
    [CrossRef]
  19. M. Kleinerman, “Energy Migration in Lanthanide Chelates,” Bull. Am. Phys. Sot. 9, 265 (1964), J. Chem. Phys. 51(6), 2370 (1969).
    [CrossRef]
  20. O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82(17), 2787–2789 (2003).
    [CrossRef]
  21. J. E. Sicre, J. T. Dubois, K. J. Eisentraut, and R. E. Sievers, “Volatile lanthanide chelates. II. Vapor pressures, heats of vaporization, and heats of sublimation,” J. Am. Chem. Soc. 91(13), 3476–3481 (1969).
    [CrossRef]
  22. N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
    [CrossRef]
  23. D. B. Beach, R. T. Collions, F. K. Legoues, and J. O. Chu, “Erbium-Doped Silicon Prepared by UHV/CVD,” in Chemical Perspectives of Microelectronic Materials III, edited by C.R. Abernathy, C.W. Bates, Jr., D.A. Bohling, and W.S. Hobson (Mater. Res. Soc. Symp. Proc. 282, Pittsburgh, PA, 1993) 397–402.
  24. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
    [CrossRef]
  25. G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
    [CrossRef]
  26. Y. Haas, G. Stein, and E. Wurzberg, “Radiationless transitions in solutions: Isotope and proximity effects on Dy3+ by C-H and C-N bonds,” J. Chem. Phys. 60, 258–263 (1974).
    [CrossRef]
  27. W. Siebrand, “Radiationless Transitions in Polyatomic Molecules. I. Calculation of Franck—Condon Factors,” J. Chem. Phys. 46(2), 440–448 (1967).
    [CrossRef]
  28. R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989).
    [CrossRef]
  29. P. K. Lim, F. Gaspari, and S. Zukotynski, “Structural properties of a-C:H deposited using saddle-field glow-discharge decomposition of methane,” J. Appl. Phys. 78(9), 5307 (1995).
    [CrossRef]
  30. J. Franks, “Atom beam source,” Vacuum 34(1-2), 259–261 (1984).
    [CrossRef]
  31. D. Shirley, “High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold,” Phys. Rev. B 5(12), 4709–4714 (1972).
    [CrossRef]
  32. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoemission Spectroscopy, Physical Electronics Division (Perkin-Elmer, Eden Prairie, 1995).
  33. N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of thin ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci. 56, 501–506 (1992).
    [CrossRef]

2008 (1)

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

2007 (2)

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

V. Toccafondo, F. Di Pasquale, S. Faralli, N. Daldosso, L. Pavesi, and H. E. Hernandez-Figueroa, “Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs,” Opt. Express 15(22), 14907–14913 (2007).
[CrossRef] [PubMed]

2006 (2)

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
[CrossRef]

2005 (1)

2004 (2)

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

2003 (2)

V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
[CrossRef]

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82(17), 2787–2789 (2003).
[CrossRef]

2002 (1)

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

2001 (2)

F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
[CrossRef]

M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001).
[CrossRef]

2000 (1)

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

1997 (2)

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[CrossRef]

1996 (2)

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[CrossRef]

1995 (2)

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[CrossRef]

P. K. Lim, F. Gaspari, and S. Zukotynski, “Structural properties of a-C:H deposited using saddle-field glow-discharge decomposition of methane,” J. Appl. Phys. 78(9), 5307 (1995).
[CrossRef]

1992 (1)

N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of thin ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci. 56, 501–506 (1992).
[CrossRef]

1989 (1)

R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989).
[CrossRef]

1984 (1)

J. Franks, “Atom beam source,” Vacuum 34(1-2), 259–261 (1984).
[CrossRef]

1974 (1)

Y. Haas, G. Stein, and E. Wurzberg, “Radiationless transitions in solutions: Isotope and proximity effects on Dy3+ by C-H and C-N bonds,” J. Chem. Phys. 60, 258–263 (1974).
[CrossRef]

1972 (1)

D. Shirley, “High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold,” Phys. Rev. B 5(12), 4709–4714 (1972).
[CrossRef]

1969 (2)

M. Kleinerman, “Energy Migration in Lanthanide Chelates,” Bull. Am. Phys. Sot. 9, 265 (1964), J. Chem. Phys. 51(6), 2370 (1969).
[CrossRef]

J. E. Sicre, J. T. Dubois, K. J. Eisentraut, and R. E. Sievers, “Volatile lanthanide chelates. II. Vapor pressures, heats of vaporization, and heats of sublimation,” J. Am. Chem. Soc. 91(13), 3476–3481 (1969).
[CrossRef]

1967 (1)

W. Siebrand, “Radiationless Transitions in Polyatomic Molecules. I. Calculation of Franck—Condon Factors,” J. Chem. Phys. 46(2), 440–448 (1967).
[CrossRef]

1962 (1)

R. E. Whan and G. A. Crosby, “Luminescence studies of rare earth complexes: Benzoylacetonate and dibenzoylmethide chelates,” J. Mol. Spectrosc. 8(1-6), 315–327 (1962).
[CrossRef]

1958 (1)

G. A. Crosby and M. Kasha, “Intramolecular energy transfer in ytterbium organic chelates,” Spectrochim. Acta [A] 10, 377–382 (1958).

Abstreiter, G.

M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001).
[CrossRef]

Ajlani, H.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

Babunts, R. A.

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

Bae, B. S.

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82(17), 2787–2789 (2003).
[CrossRef]

Baranov, A. M.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Baranov, P. G.

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

Barbier, D.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

Belova, N. V.

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

Bongiorno, C.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Brunner, K.

M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001).
[CrossRef]

Calliari, L.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Caristia, L.

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

Castagna, M. E.

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

Charrier, J.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

Chiasera, A.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Coffa, S.

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

Crosby, G. A.

R. E. Whan and G. A. Crosby, “Luminescence studies of rare earth complexes: Benzoylacetonate and dibenzoylmethide chelates,” J. Mol. Spectrosc. 8(1-6), 315–327 (1962).
[CrossRef]

G. A. Crosby and M. Kasha, “Intramolecular energy transfer in ytterbium organic chelates,” Spectrochim. Acta [A] 10, 377–382 (1958).

Daldosso, N.

de Waal, H.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[CrossRef]

Delavaux, J.-M. P.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

Di Pasquale, F.

Dubois, J. T.

J. E. Sicre, J. T. Dubois, K. J. Eisentraut, and R. E. Sievers, “Volatile lanthanide chelates. II. Vapor pressures, heats of vaporization, and heats of sublimation,” J. Am. Chem. Soc. 91(13), 3476–3481 (1969).
[CrossRef]

Eisentraut, K. J.

J. E. Sicre, J. T. Dubois, K. J. Eisentraut, and R. E. Sievers, “Volatile lanthanide chelates. II. Vapor pressures, heats of vaporization, and heats of sublimation,” J. Am. Chem. Soc. 91(13), 3476–3481 (1969).
[CrossRef]

Faber, A. J.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[CrossRef]

Fanchenko, S. S.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Faralli, S.

Ferrari, M.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Franks, J.

J. Franks, “Atom beam source,” Vacuum 34(1-2), 259–261 (1984).
[CrossRef]

Franzò, G.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
[CrossRef]

Gaspari, F.

P. K. Lim, F. Gaspari, and S. Zukotynski, “Structural properties of a-C:H deposited using saddle-field glow-discharge decomposition of methane,” J. Appl. Phys. 78(9), 5307 (1995).
[CrossRef]

R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989).
[CrossRef]

Gillin, W. P.

L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
[CrossRef]

Girichev, G. V.

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

Giricheva, N. I.

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

Granlund, S.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

Guerfi, N.

N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of thin ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci. 56, 501–506 (1992).
[CrossRef]

Gurovic, J.

V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
[CrossRef]

Haas, Y.

Y. Haas, G. Stein, and E. Wurzberg, “Radiationless transitions in solutions: Isotope and proximity effects on Dy3+ by C-H and C-N bonds,” J. Chem. Phys. 60, 258–263 (1974).
[CrossRef]

Haesaert, S.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

Haji, L.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

Hernandez-Figueroa, H. E.

Huttel, I.

V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
[CrossRef]

Iacona, F.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
[CrossRef]

Ilin, I. V.

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

Irrera, A.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
[CrossRef]

Kalkman, J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

Kasha, M.

G. A. Crosby and M. Kasha, “Intramolecular energy transfer in ytterbium organic chelates,” Spectrochim. Acta [A] 10, 377–382 (1958).

Kevorkian, A.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

Khramtsov, V. A.

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

Kik, P. G.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[CrossRef]

Kippenberg, T. J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

Kleinerman, M.

M. Kleinerman, “Energy Migration in Lanthanide Chelates,” Bull. Am. Phys. Sot. 9, 265 (1964), J. Chem. Phys. 51(6), 2370 (1969).
[CrossRef]

Kruzelecky, R. V.

R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989).
[CrossRef]

Lee, J.

Leonardi, S.

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

Lim, P. K.

P. K. Lim, F. Gaspari, and S. Zukotynski, “Structural properties of a-C:H deposited using saddle-field glow-discharge decomposition of methane,” J. Appl. Phys. 78(9), 5307 (1995).
[CrossRef]

Lollman, D. B.

N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of thin ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci. 56, 501–506 (1992).
[CrossRef]

Lorenti, S.

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

Lorrain, N.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

Mackova, A.

V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
[CrossRef]

Markmann, M.

M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001).
[CrossRef]

Min, B.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

Miritello, M.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Mizuhara, O.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

Mokhov, E. N.

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

Motevalli, M.

L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
[CrossRef]

Muscara, A.

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

Najar, A.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

Nefedov, A. A.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Nekvindova, P.

V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
[CrossRef]

Neufeld, E.

M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001).
[CrossRef]

Nguyen Tan, T. A.

N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of thin ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci. 56, 501–506 (1992).
[CrossRef]

Oueslati, M.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

Pacific, D.

F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
[CrossRef]

Park, N.

Park, O. H.

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82(17), 2787–2789 (2003).
[CrossRef]

Pavesi, L.

Perz, J. M.

R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989).
[CrossRef]

Piro, A. M.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Polman, A.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[CrossRef]

Prajzlera, V.

V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
[CrossRef]

Priolo, F.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
[CrossRef]

Rattay, M.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

Romanov, N. G.

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

Saint André, F.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

Savio, R. L.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Schrfel, J.

V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
[CrossRef]

Seo, S. Y.

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82(17), 2787–2789 (2003).
[CrossRef]

Shin, J. H.

J. Lee, J. H. Shin, and N. Park, “Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs,” J. Lightwave Technol. 23(1), 19–25 (2005).
[CrossRef]

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82(17), 2787–2789 (2003).
[CrossRef]

Shirley, D.

D. Shirley, “High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold,” Phys. Rev. B 5(12), 4709–4714 (1972).
[CrossRef]

Shlykov, S. A.

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

Sicre, J. E.

J. E. Sicre, J. T. Dubois, K. J. Eisentraut, and R. E. Sievers, “Volatile lanthanide chelates. II. Vapor pressures, heats of vaporization, and heats of sublimation,” J. Am. Chem. Soc. 91(13), 3476–3481 (1969).
[CrossRef]

Siebrand, W.

W. Siebrand, “Radiationless Transitions in Polyatomic Molecules. I. Calculation of Franck—Condon Factors,” J. Chem. Phys. 46(2), 440–448 (1967).
[CrossRef]

Sievers, R. E.

J. E. Sicre, J. T. Dubois, K. J. Eisentraut, and R. E. Sievers, “Volatile lanthanide chelates. II. Vapor pressures, heats of vaporization, and heats of sublimation,” J. Am. Chem. Soc. 91(13), 3476–3481 (1969).
[CrossRef]

Sleptsov, V. V.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Smit, M. K.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

Snoeks, E.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[CrossRef]

Speranza, G.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Stein, G.

Y. Haas, G. Stein, and E. Wurzberg, “Radiationless transitions in solutions: Isotope and proximity effects on Dy3+ by C-H and C-N bonds,” J. Chem. Phys. 60, 258–263 (1974).
[CrossRef]

Sticht, A.

M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001).
[CrossRef]

Tan, R. H. C.

L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
[CrossRef]

Toccafondo, V.

Tran Ngoc, K.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Tringali, C.

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

Tverdova, N. V.

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

Tzeng, L. D.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

Ukah, C. I.

R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989).
[CrossRef]

Vahala, K. J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

van Dam, C.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

van Uffelen, J. W. M.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

Varfolomeev, A. E.

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

Vetrov, V. A.

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

Veuillen, J. Y.

N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of thin ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci. 56, 501–506 (1992).
[CrossRef]

Vinciguerra, V.

F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
[CrossRef]

Vogt, J.

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

Vogt, N.

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

Whan, R. E.

R. E. Whan and G. A. Crosby, “Luminescence studies of rare earth complexes: Benzoylacetonate and dibenzoylmethide chelates,” J. Mol. Spectrosc. 8(1-6), 315–327 (1962).
[CrossRef]

Winkless, L.

L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
[CrossRef]

Wurzberg, E.

Y. Haas, G. Stein, and E. Wurzberg, “Radiationless transitions in solutions: Isotope and proximity effects on Dy3+ by C-H and C-N bonds,” J. Chem. Phys. 60, 258–263 (1974).
[CrossRef]

Wyatt, P. B.

L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
[CrossRef]

Yan, Y.

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[CrossRef]

Zheng, Y.

L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
[CrossRef]

Zukotynski, S.

P. K. Lim, F. Gaspari, and S. Zukotynski, “Structural properties of a-C:H deposited using saddle-field glow-discharge decomposition of methane,” J. Appl. Phys. 78(9), 5307 (1995).
[CrossRef]

R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989).
[CrossRef]

Adv. Mater. (1)

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006).
[CrossRef]

M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001).
[CrossRef]

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82(17), 2787–2789 (2003).
[CrossRef]

Appl. Surf. Sci. (2)

G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004).
[CrossRef]

N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of thin ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci. 56, 501–506 (1992).
[CrossRef]

Bull. Am. Phys. Sot. 9, 265 (1964), J. Chem. Phys. (1)

M. Kleinerman, “Energy Migration in Lanthanide Chelates,” Bull. Am. Phys. Sot. 9, 265 (1964), J. Chem. Phys. 51(6), 2370 (1969).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

J. E. Sicre, J. T. Dubois, K. J. Eisentraut, and R. E. Sievers, “Volatile lanthanide chelates. II. Vapor pressures, heats of vaporization, and heats of sublimation,” J. Am. Chem. Soc. 91(13), 3476–3481 (1969).
[CrossRef]

J. Appl. Phys. (4)

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001).
[CrossRef]

P. K. Lim, F. Gaspari, and S. Zukotynski, “Structural properties of a-C:H deposited using saddle-field glow-discharge decomposition of methane,” J. Appl. Phys. 78(9), 5307 (1995).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[CrossRef]

J. Chem. Phys. (2)

Y. Haas, G. Stein, and E. Wurzberg, “Radiationless transitions in solutions: Isotope and proximity effects on Dy3+ by C-H and C-N bonds,” J. Chem. Phys. 60, 258–263 (1974).
[CrossRef]

W. Siebrand, “Radiationless Transitions in Polyatomic Molecules. I. Calculation of Franck—Condon Factors,” J. Chem. Phys. 46(2), 440–448 (1967).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006).
[CrossRef]

J. Mol. Spectrosc. (1)

R. E. Whan and G. A. Crosby, “Luminescence studies of rare earth complexes: Benzoylacetonate and dibenzoylmethide chelates,” J. Mol. Spectrosc. 8(1-6), 315–327 (1962).
[CrossRef]

J. Mol. Struct. (1)

N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002).
[CrossRef]

J. Non-Cryst. Solids (1)

Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995).
[CrossRef]

J. Vac. Sci. Technol. A (1)

R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989).
[CrossRef]

Mater. Sci. Eng. B (1)

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[CrossRef]

Phys. Rev. B (1)

D. Shirley, “High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold,” Phys. Rev. B 5(12), 4709–4714 (1972).
[CrossRef]

Phys. Solid State (1)

R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000).
[CrossRef]

Spectrochim. Acta [A] (1)

G. A. Crosby and M. Kasha, “Intramolecular energy transfer in ytterbium organic chelates,” Spectrochim. Acta [A] 10, 377–382 (1958).

Thin Solid Films (1)

V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003).
[CrossRef]

Vacuum (1)

J. Franks, “Atom beam source,” Vacuum 34(1-2), 259–261 (1984).
[CrossRef]

Other (3)

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoemission Spectroscopy, Physical Electronics Division (Perkin-Elmer, Eden Prairie, 1995).

R. Clergereaux, D. Escaich, S. Martin, P. Raynaud, and F. Gaillard, “Carbon Layer as a New Material for Optics,” in New Materials for Microphotonics, edited by J. H. Shin, M. Brongersma, C. Buchal, and F. Priolo (Mater. Res. Soc. Symp. Proc. 817, Warrendale, PA, 2004), paper L6.23.

D. B. Beach, R. T. Collions, F. K. Legoues, and J. O. Chu, “Erbium-Doped Silicon Prepared by UHV/CVD,” in Chemical Perspectives of Microelectronic Materials III, edited by C.R. Abernathy, C.W. Bates, Jr., D.A. Bohling, and W.S. Hobson (Mater. Res. Soc. Symp. Proc. 282, Pittsburgh, PA, 1993) 397–402.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the erbium metal organic precursor, tris(2,2,6,6-tetramethy1-3-5-heptanedionato) Erbium(III), abbreviated Er(tmhd)3. The large central atom (purple) represents Er, the immediately surrounding 6 atoms (red) represent O, the larger atoms (dark grey) attached to the oxygen atoms are C atoms, while the smaller atoms (light grey) attached to carbon atoms represent H atoms. Note, the hydro-carbon ligands provide the framework for seamless integration into a hydrogenated/deuterated amorphous carbon network.

Fig. 2
Fig. 2

Illustration of energy levels of vibrational modes in organic media and the broadened 4I13/24I15/2 transition of Er3+; ν represents the harmonic numbers. The data concerning the C-H, C-D, O-H, and O-D vibrational modes are taken from [26]. The arrows indicate the energy transfer from excited Er3+ to the matching vibrational modes. The different styles of the arrows (bold compared to dashed) indicate the transition probability, which is higher for C-H and O-H at ν = 2 (bold) than for C-D and O-D at ν = 3 (dashed).

Fig. 3
Fig. 3

(a) PL comparison between 1.1 mol% of Er(tmhd)3 diluted in methanol (CH3OH) and deuterated methanol (CD3OD). The peak intensity is improved by ten-fold when Er(tmhd)3 is dissolved in C-H free solvent. (b) PL comparison between a-C:H(Er: 2.0%) and a-C:D(Er: 2.3%) films prepared under same deposition conditions except for the different precursor gas, CH4 for a-C:H(Er) and CD4 for a-C:D(Er). By deuteration of host material, the intensity of Er PL at 1540 nm is enhanced by ten-fold.

Fig. 4
Fig. 4

A schematic diagram of metal organic – dc saddle-field plasma enhanced chemical vapour deposition system used for the preparation of erbium doped deuterated amorphous carbon. The grey region surrounding the semi-transparent electrodes (mesh) represents the deuterated methane plasma.

Fig. 5
Fig. 5

C, Si, O, Er and O concentrations as function of the distance from the film surface as determined by XPS for sample #4.

Fig. 6
Fig. 6

(a) Room-temperature PL spectra of a-C:D(Er) samples with different Er concentrations and film thicknesses. The peak is centered at 1540 nm with FWHM of ~70 nm. (b) The peak PL intensity normalized to film thickness as a function of Er concentration in a-C:D(Er) films. The symbols are actual data points, the line is a guide to the eye. The linear region suggests no concentration quenching for Er concentrations up to at least 1.4 at.%.

Fig. 7
Fig. 7

Er 4d XPS spectra of the four a-C:D(Er) film samples, an Er(tmhd)R3R film (prepared by evaporating the powder) and the Er(tmhd)R3R powder. Each spectrum is normalized to its maximum intensity after a background subtraction and offset vertically for clarity of presentation.

Tables (1)

Tables Icon

Table 1 Atomic concentrations of a-C:D(Er) samples computed from XPS spectra

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( E ) = e γ γ ν ν ! ,     γ = 1 2 k ( q ¯ q ¯ 0 ) 2 ω

Metrics