Abstract

An interferometer having resolution fourteen times higher than a conventional single-pass interferometer has been developed by creating multiple-pass optical path. To embody the multiple-pass optical configuration, a two-dimensional corner cube array block was designed, where its symmetric structure minimized the measurement error. The effect from the alignment error and the imperfection of corner cube is calculated and is in picometer level. An experiment proves that the proposed interferometer has optical resolution of approximate 45 nm and its nonlinearity is about 0.5 nm in peak-to-valley value.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406(6799), 1027-1031 (2000).
    [CrossRef]
  2. M. Totzeck, W. Ulrich, A. Göhnermeier and W. Kaiser, "Semiconductor fabrication - Pushing deep ultraviolet lithography to its limits," Nat. Photonics 1, 629-631 (2007).
    [CrossRef]
  3. M. Pisani, "Multiple reflection Michelson interferometer with picometer resolution," Opt. Express 16(26), 21558-21563, (2008).
    [CrossRef]
  4. H. Haitjema, P. H. J. Schellekens and S. F. C. L Wetzels, "Calibration of displacement sensors up to 300 μm with nanometer accuracy and direct traceability to a primary standard of length," Metrologia,  37, 25-33 (2000).
    [CrossRef]
  5. M. J. Downs and W. R. C. Rowley, "A proposed design for a polarization-insensitive optical interferometer system with subnanometric capability," Precis. Eng. 15(4), 281-286 (1993).
    [CrossRef]
  6. T. B. Eom, J. Y. Kim and K. Jeong, "The dynamic compensation of nonlinearity in a homodyne laser interferometer," Meas. Sci. Technol. 12, 1734-1738 (2001).
    [CrossRef]
  7. P. L. M. Heydemann, "Determination and correction of quadrature fringe measurement errors in interferometers," Appl. Opt. 20, 3382-3384 (1981).
    [CrossRef] [PubMed]
  8. EMRP T3.J1.4.NANOTRACE "New traceability routes for nanometrology," www.emrpoline.eu.
  9. B. C. Park, T. B. Eom and M. S. Chung, "Polarization properties of cube-corner retroreflectors and their effects on signal strength and nonlinearity in heterodyne interferometers," Appl. Opt. 35(22), 4372-4380 (1996).
    [CrossRef]
  10. G. D’Agostino, A. Germak, S. Desogus, C. Origlia and G. Barboto, "A method to estimate the time-position coordinates of a free-falling test mass in absolute gravimetry," Metrologia,  42, 233-238 (2005).
    [CrossRef]

2008

2007

M. Totzeck, W. Ulrich, A. Göhnermeier and W. Kaiser, "Semiconductor fabrication - Pushing deep ultraviolet lithography to its limits," Nat. Photonics 1, 629-631 (2007).
[CrossRef]

2005

G. D’Agostino, A. Germak, S. Desogus, C. Origlia and G. Barboto, "A method to estimate the time-position coordinates of a free-falling test mass in absolute gravimetry," Metrologia,  42, 233-238 (2005).
[CrossRef]

2001

T. B. Eom, J. Y. Kim and K. Jeong, "The dynamic compensation of nonlinearity in a homodyne laser interferometer," Meas. Sci. Technol. 12, 1734-1738 (2001).
[CrossRef]

2000

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406(6799), 1027-1031 (2000).
[CrossRef]

H. Haitjema, P. H. J. Schellekens and S. F. C. L Wetzels, "Calibration of displacement sensors up to 300 μm with nanometer accuracy and direct traceability to a primary standard of length," Metrologia,  37, 25-33 (2000).
[CrossRef]

1996

1993

M. J. Downs and W. R. C. Rowley, "A proposed design for a polarization-insensitive optical interferometer system with subnanometric capability," Precis. Eng. 15(4), 281-286 (1993).
[CrossRef]

1981

Barboto, G.

G. D’Agostino, A. Germak, S. Desogus, C. Origlia and G. Barboto, "A method to estimate the time-position coordinates of a free-falling test mass in absolute gravimetry," Metrologia,  42, 233-238 (2005).
[CrossRef]

Chung, M. S.

D’Agostino, G.

G. D’Agostino, A. Germak, S. Desogus, C. Origlia and G. Barboto, "A method to estimate the time-position coordinates of a free-falling test mass in absolute gravimetry," Metrologia,  42, 233-238 (2005).
[CrossRef]

Desogus, S.

G. D’Agostino, A. Germak, S. Desogus, C. Origlia and G. Barboto, "A method to estimate the time-position coordinates of a free-falling test mass in absolute gravimetry," Metrologia,  42, 233-238 (2005).
[CrossRef]

Downs, M. J.

M. J. Downs and W. R. C. Rowley, "A proposed design for a polarization-insensitive optical interferometer system with subnanometric capability," Precis. Eng. 15(4), 281-286 (1993).
[CrossRef]

Eom, T. B.

T. B. Eom, J. Y. Kim and K. Jeong, "The dynamic compensation of nonlinearity in a homodyne laser interferometer," Meas. Sci. Technol. 12, 1734-1738 (2001).
[CrossRef]

B. C. Park, T. B. Eom and M. S. Chung, "Polarization properties of cube-corner retroreflectors and their effects on signal strength and nonlinearity in heterodyne interferometers," Appl. Opt. 35(22), 4372-4380 (1996).
[CrossRef]

Germak, A.

G. D’Agostino, A. Germak, S. Desogus, C. Origlia and G. Barboto, "A method to estimate the time-position coordinates of a free-falling test mass in absolute gravimetry," Metrologia,  42, 233-238 (2005).
[CrossRef]

Göhnermeier, A.

M. Totzeck, W. Ulrich, A. Göhnermeier and W. Kaiser, "Semiconductor fabrication - Pushing deep ultraviolet lithography to its limits," Nat. Photonics 1, 629-631 (2007).
[CrossRef]

Haitjema, H.

H. Haitjema, P. H. J. Schellekens and S. F. C. L Wetzels, "Calibration of displacement sensors up to 300 μm with nanometer accuracy and direct traceability to a primary standard of length," Metrologia,  37, 25-33 (2000).
[CrossRef]

Heydemann, P. L. M.

Ito, T.

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406(6799), 1027-1031 (2000).
[CrossRef]

Jeong, K.

T. B. Eom, J. Y. Kim and K. Jeong, "The dynamic compensation of nonlinearity in a homodyne laser interferometer," Meas. Sci. Technol. 12, 1734-1738 (2001).
[CrossRef]

Kaiser, W.

M. Totzeck, W. Ulrich, A. Göhnermeier and W. Kaiser, "Semiconductor fabrication - Pushing deep ultraviolet lithography to its limits," Nat. Photonics 1, 629-631 (2007).
[CrossRef]

Kim, J. Y.

T. B. Eom, J. Y. Kim and K. Jeong, "The dynamic compensation of nonlinearity in a homodyne laser interferometer," Meas. Sci. Technol. 12, 1734-1738 (2001).
[CrossRef]

Okazaki, S.

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406(6799), 1027-1031 (2000).
[CrossRef]

Origlia, C.

G. D’Agostino, A. Germak, S. Desogus, C. Origlia and G. Barboto, "A method to estimate the time-position coordinates of a free-falling test mass in absolute gravimetry," Metrologia,  42, 233-238 (2005).
[CrossRef]

Park, B. C.

Pisani, M.

Rowley, W. R. C.

M. J. Downs and W. R. C. Rowley, "A proposed design for a polarization-insensitive optical interferometer system with subnanometric capability," Precis. Eng. 15(4), 281-286 (1993).
[CrossRef]

Schellekens, P. H. J.

H. Haitjema, P. H. J. Schellekens and S. F. C. L Wetzels, "Calibration of displacement sensors up to 300 μm with nanometer accuracy and direct traceability to a primary standard of length," Metrologia,  37, 25-33 (2000).
[CrossRef]

Totzeck, M.

M. Totzeck, W. Ulrich, A. Göhnermeier and W. Kaiser, "Semiconductor fabrication - Pushing deep ultraviolet lithography to its limits," Nat. Photonics 1, 629-631 (2007).
[CrossRef]

Ulrich, W.

M. Totzeck, W. Ulrich, A. Göhnermeier and W. Kaiser, "Semiconductor fabrication - Pushing deep ultraviolet lithography to its limits," Nat. Photonics 1, 629-631 (2007).
[CrossRef]

Wetzels, S. F. C. L

H. Haitjema, P. H. J. Schellekens and S. F. C. L Wetzels, "Calibration of displacement sensors up to 300 μm with nanometer accuracy and direct traceability to a primary standard of length," Metrologia,  37, 25-33 (2000).
[CrossRef]

Appl. Opt.

Meas. Sci. Technol.

T. B. Eom, J. Y. Kim and K. Jeong, "The dynamic compensation of nonlinearity in a homodyne laser interferometer," Meas. Sci. Technol. 12, 1734-1738 (2001).
[CrossRef]

Metrologia

H. Haitjema, P. H. J. Schellekens and S. F. C. L Wetzels, "Calibration of displacement sensors up to 300 μm with nanometer accuracy and direct traceability to a primary standard of length," Metrologia,  37, 25-33 (2000).
[CrossRef]

G. D’Agostino, A. Germak, S. Desogus, C. Origlia and G. Barboto, "A method to estimate the time-position coordinates of a free-falling test mass in absolute gravimetry," Metrologia,  42, 233-238 (2005).
[CrossRef]

Nat. Photonics

M. Totzeck, W. Ulrich, A. Göhnermeier and W. Kaiser, "Semiconductor fabrication - Pushing deep ultraviolet lithography to its limits," Nat. Photonics 1, 629-631 (2007).
[CrossRef]

Nature

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406(6799), 1027-1031 (2000).
[CrossRef]

Opt. Express

Precis. Eng.

M. J. Downs and W. R. C. Rowley, "A proposed design for a polarization-insensitive optical interferometer system with subnanometric capability," Precis. Eng. 15(4), 281-286 (1993).
[CrossRef]

Other

EMRP T3.J1.4.NANOTRACE "New traceability routes for nanometrology," www.emrpoline.eu.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simple diagram of multiple pass interferometer

Fig. 2.
Fig. 2.

Arrangement of corner cubes and beam path in the two-dimensional CCA configuration (a) before the incident beam reflects at M0 [path order : a→b→c→d→e→f→g→h→i→j→k→l→m→n] (b) after the incident beam reflects at M0 [path order : n′→m′→l′→k′→j′→i′→h′→g′→f′→e′→d′→c′→b′→a′]

Fig. 3.
Fig. 3.

Path length variation due to the rotation of moving CCA block

Fig. 4.
Fig. 4.

Path length variation due to the yaw and pitch motion of stage

Fig. 5.
Fig. 5.

Simple diagram of experiment setup (HWP: Half Wave Plate, PBS: Polarization Beam Splitter, QWP: Quarter Wave Plate, NPBS: Non-Polarization Beam Splitter, Pol: Polarizer, PD: Photo Diode).

Fig. 6.
Fig. 6.

Periodic signal according to the displacement of fine motion stage

Metrics