Abstract

We introduce a method for depth-resolved photorefractive holographic imaging with potentially extremely short acquisition time for a complete three dimensional (3D) image. By combining the advantages of full-field frequency-domain optical coherence tomography with those of photorefractive holography our concept is capable of obtaining 3D information with only one single shot. We describe the operation principle of our concept and give a first experimental proof of principle.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” Appl. Phys. (Berl.) 36, 207–227 (2003).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
    [PubMed]
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 11361 (2003).
    [CrossRef]
  5. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
    [CrossRef] [PubMed]
  6. M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
    [CrossRef]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  8. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography- principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  10. G. Häusler and M. W. Lindner, “Coherence Radar and Spectral Radar- New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
    [CrossRef]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  12. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
    [CrossRef] [PubMed]
  13. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  14. P. H. Tomlins and R. K. Wang, “Theory, development and applications of optical coherence tomography,” Appl. Phys. (Berl.) 38, 2519–2535 (2005).
  15. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. S. Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244 (1998).
    [CrossRef] [PubMed]
  16. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131 (2005).
    [CrossRef] [PubMed]
  17. A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A 7, 350–356 (2005).
    [CrossRef]
  18. K. A. Stetson, “Holographic fog penetration,” J. Opt. Soc. Am. 57(8), 1060–1061 (1967).
    [CrossRef]
  19. K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36(12), 1210–1221 (1989).
    [CrossRef] [PubMed]
  20. N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
    [CrossRef]
  21. U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [CrossRef] [PubMed]
  22. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
    [CrossRef]
  23. H. Chen, M. Shih, E. Arons, J. Lopez, D. Dilworth, and P. C. Sun, “Electronic holographic imaging through living human tissue,” Appl. Opt. 33(17), 3630 (1994).
    [CrossRef] [PubMed]
  24. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
    [CrossRef] [PubMed]
  25. M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19(7), 074010 (2008).
    [CrossRef]
  26. P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).
    [CrossRef]
  27. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
    [CrossRef] [PubMed]
  28. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331 (1995).
    [CrossRef] [PubMed]
  29. Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
    [CrossRef]
  30. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782 (1995).
    [CrossRef] [PubMed]
  31. W. J. Carlsen, “Holographic Page Synthesis for Sequential Input of Data,” Appl. Opt. 13(4), 896 (1974).
    [CrossRef] [PubMed]
  32. C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic Storage demonstrator based on Phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4(5), 832 (1998).
    [CrossRef]
  33. F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16(8), 605 (1991).
    [CrossRef] [PubMed]
  34. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17(20), 1471 (1992).
    [CrossRef] [PubMed]
  35. M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3(4), 138–140 (1978).
    [CrossRef] [PubMed]
  36. J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
    [CrossRef]
  37. M. Born, and E. Wolf, VII Theory of interference and interferometers,” in Principles of Optics, (Cambridge University Press, 7th edition, (1999).
  38. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415 (2002).
    [CrossRef] [PubMed]
  39. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ration in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147 (2005).
    [CrossRef] [PubMed]
  40. R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol. 52(19), 5897–5907 (2007).
    [CrossRef] [PubMed]
  41. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 9 (1969).
  42. F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,” Opt. Commun. 103(1-2), 59–62 (1993).
    [CrossRef]
  43. S. Campbell, Y. Zhang, and P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123(1-3), 27–33 (1996).
    [CrossRef]
  44. W. J. Burke and P. Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. Appl. Phys. 48(2), 681 (1977).
    [CrossRef]
  45. K. Peithmann and A. W. K. Buse, ”Incremental recording in lithium niobate with active phase locking,” Opt. Lett. 23(24), 1927 (1998).
    [CrossRef] [PubMed]
  46. A. C. Strasser, E. S. Maniloff, K. M. Johnson, and S. D. D. Goggin, “Procedure for recording multiplex exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14(1), 6 (1989).
    [CrossRef] [PubMed]
  47. J. E. Ford, Y. Fainman, and S. H. Lee, “Enhanced photorefractive performance from 45°-cut BaTiO3,” Appl. Opt. 28(22), 4808 (1989).
    [CrossRef] [PubMed]
  48. M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
    [CrossRef]
  49. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
    [CrossRef]
  50. I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
    [CrossRef]

2009 (1)

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

2008 (2)

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19(7), 074010 (2008).
[CrossRef]

2007 (2)

R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol. 52(19), 5897–5907 (2007).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
[CrossRef] [PubMed]

2005 (5)

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ration in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147 (2005).
[CrossRef] [PubMed]

B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131 (2005).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, development and applications of optical coherence tomography,” Appl. Phys. (Berl.) 38, 2519–2535 (2005).

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A 7, 350–356 (2005).
[CrossRef]

2004 (1)

2003 (7)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).
[CrossRef]

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” Appl. Phys. (Berl.) 36, 207–227 (2003).

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 11361 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography- principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2002 (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415 (2002).
[CrossRef] [PubMed]

2001 (2)

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

1999 (2)

M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[CrossRef]

1998 (4)

G. Häusler and M. W. Lindner, “Coherence Radar and Spectral Radar- New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
[CrossRef]

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic Storage demonstrator based on Phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4(5), 832 (1998).
[CrossRef]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. S. Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244 (1998).
[CrossRef] [PubMed]

K. Peithmann and A. W. K. Buse, ”Incremental recording in lithium niobate with active phase locking,” Opt. Lett. 23(24), 1927 (1998).
[CrossRef] [PubMed]

1997 (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

1996 (1)

S. Campbell, Y. Zhang, and P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123(1-3), 27–33 (1996).
[CrossRef]

1995 (4)

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782 (1995).
[CrossRef] [PubMed]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331 (1995).
[CrossRef] [PubMed]

1994 (2)

1993 (1)

F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,” Opt. Commun. 103(1-2), 59–62 (1993).
[CrossRef]

1992 (1)

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16(8), 605 (1991).
[CrossRef] [PubMed]

1989 (3)

1978 (1)

1977 (1)

W. J. Burke and P. Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. Appl. Phys. 48(2), 681 (1977).
[CrossRef]

1974 (1)

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 9 (1969).

1967 (1)

Abramson, N. H.

K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36(12), 1210–1221 (1989).
[CrossRef] [PubMed]

Ansari, Z.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Arons, E.

Barbastathis, G.

Barry, N. P.

Beaurepaire, E.

Bidault, O.

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36(12), 1210–1221 (1989).
[CrossRef] [PubMed]

Blanchot, L.

Blazkiewicz, P.

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A 7, 350–356 (2005).
[CrossRef]

Boccara, A. C.

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Breede, M.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

Brezinski, M. E.

M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Burke, W. J.

W. J. Burke and P. Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. Appl. Phys. 48(2), 681 (1977).
[CrossRef]

Buse, A. W. K.

Campbell, S.

S. Campbell, Y. Zhang, and P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123(1-3), 27–33 (1996).
[CrossRef]

Carlsen, W. J.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, H.

Chen, Z.

Chi, M.

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

Curtis, K.

Dainty, J. C.

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef] [PubMed]

de Boer, J. F.

Denz, C.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic Storage demonstrator based on Phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4(5), 832 (1998).
[CrossRef]

Dilworth, D.

Dou, S.

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography- principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Duker, J. S.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

Dunsby, C.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” Appl. Phys. (Berl.) 36, 207–227 (2003).

Dunsby, C. W.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fainman, Y.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ford, J. E.

French, P. M. W.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” Appl. Phys. (Berl.) 36, 207–227 (2003).

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331 (1995).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 11361 (2003).
[CrossRef]

M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

Gadret, G.

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

Gao, H.

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

Gerhardt, N. C.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

Goggin, S. D. D.

Grabar, A. A.

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
[CrossRef]

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, Y.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Gurzan, M. I.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, “Coherence Radar and Spectral Radar- New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
[CrossRef]

Headley, W.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Hee, M. R.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heimann, T.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic Storage demonstrator based on Phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4(5), 832 (1998).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography- principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Hofmann, M.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hyde, S. C. W.

Iftimia, N.

Itoh, M.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Izatt, J. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

Jalmes, H. S.

Jeong, K.

Johnson, K. M.

Jones, R.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331 (1995).
[CrossRef] [PubMed]

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[CrossRef]

U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Karavassilis, D. P.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Kedyk, I. V.

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
[CrossRef]

Kim, M. K.

M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19(7), 074010 (2008).
[CrossRef]

Klein, M. B.

Köber, S.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 9 (1969).

Koukourakis, N.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

Kowalczyk, A.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography- principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Lebec, M.

Lee, S. H.

Leitgeb, R.

Leitgeb, R. A.

Levene, M.

Leyva, V.

Lin, C. P.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, “Coherence Radar and Spectral Radar- New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
[CrossRef]

Littman, M. G.

Lopez, J.

Maniloff, E. S.

Mathey, P.

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

Meerholz, K.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

Melloch, M. R.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Mok, F. H.

Molnar, A. A.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
[CrossRef]

Müller, K.-O.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic Storage demonstrator based on Phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4(5), 832 (1998).
[CrossRef]

Mustata, M.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).
[CrossRef]

Nelson, J. S.

Nolte, D. D.

K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
[CrossRef] [PubMed]

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).
[CrossRef]

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Peithmann, K.

Peng, L.

Pircher, M.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Potcoava, M. C.

M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19(7), 074010 (2008).
[CrossRef]

Psaltis, D.

Pu, A.

Puliafito, C. A.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rakuljic, G. A.

Reichel, E.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

Salvador, M.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

Sarunic, M. V.

Schmitt, J. M.

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[CrossRef]

U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[CrossRef] [PubMed]

Schuman, J. S.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36(12), 1210–1221 (1989).
[CrossRef] [PubMed]

Sheng, P.

W. J. Burke and P. Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. Appl. Phys. 48(2), 681 (1977).
[CrossRef]

Shih, M.

Siegel, J.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Song, H.

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Spears, K. G.

K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36(12), 1210–1221 (1989).
[CrossRef] [PubMed]

Stetson, K. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stoika, I. M.

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
[CrossRef]

Stoll, H. M.

Strasser, A. C.

Sun, P. C.

Swanson, E. A.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tackitt, M. C.

Tearney, G. J.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, development and applications of optical coherence tomography,” Appl. Phys. (Berl.) 38, 2519–2535 (2005).

Tschudi, T.

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic Storage demonstrator based on Phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4(5), 832 (1998).
[CrossRef]

Turek, J. J.

Tziraki, M.

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

Vintrou, J.

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A 7, 350–356 (2005).
[CrossRef]

Vysochanskii, Y. M.

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
[CrossRef]

Wang, R. K.

R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol. 52(19), 5897–5907 (2007).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, development and applications of optical coherence tomography,” Appl. Phys. (Berl.) 38, 2519–2535 (2005).

Wechsler, B. A.

Wojtkowski, M.

Yang, C.

Yariv, A.

Ye, P.

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

Yeh, P.

S. Campbell, Y. Zhang, and P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123(1-3), 27–33 (1996).
[CrossRef]

Yin, S.

F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,” Opt. Commun. 103(1-2), 59–62 (1993).
[CrossRef]

Yu, F. T. S.

F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,” Opt. Commun. 103(1-2), 59–62 (1993).
[CrossRef]

Yu, P.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).
[CrossRef]

Yun, S. H.

Zhang, J.

Zhang, Y.

S. Campbell, Y. Zhang, and P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123(1-3), 27–33 (1996).
[CrossRef]

Zhao, F.

F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,” Opt. Commun. 103(1-2), 59–62 (1993).
[CrossRef]

Zhou, H.

F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,” Opt. Commun. 103(1-2), 59–62 (1993).
[CrossRef]

Zhu, X. M.

K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36(12), 1210–1221 (1989).
[CrossRef] [PubMed]

Zhu, Y.

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

Zu, J.

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

Zvyagin, A. V.

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A 7, 350–356 (2005).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. (Berl.) (2)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” Appl. Phys. (Berl.) 36, 207–227 (2003).

P. H. Tomlins and R. K. Wang, “Theory, development and applications of optical coherence tomography,” Appl. Phys. (Berl.) 38, 2519–2535 (2005).

Appl. Phys. Lett. (1)

P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 9 (1969).

Chin. Phys. Lett. (1)

M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997).
[CrossRef]

Electron. Lett. (1)

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001).
[CrossRef]

C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic Storage demonstrator based on Phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4(5), 832 (1998).
[CrossRef]

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36(12), 1210–1221 (1989).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

W. J. Burke and P. Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. Appl. Phys. 48(2), 681 (1977).
[CrossRef]

J. Biomed. Opt. (2)

G. Häusler and M. W. Lindner, “Coherence Radar and Spectral Radar- New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
[CrossRef]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef] [PubMed]

J. Op. Soc. Am. B (1)

I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008).
[CrossRef]

J. Opt. A (1)

A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A 7, 350–356 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[CrossRef]

M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19(7), 074010 (2008).
[CrossRef]

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 11361 (2003).
[CrossRef]

Ophthalmology (1)

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

Opt. Commun. (4)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,” Opt. Commun. 103(1-2), 59–62 (1993).
[CrossRef]

S. Campbell, Y. Zhang, and P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123(1-3), 27–33 (1996).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001).
[CrossRef]

Opt. Express (4)

Opt. Lett. (10)

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ration in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415 (2002).
[CrossRef] [PubMed]

M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3(4), 138–140 (1978).
[CrossRef] [PubMed]

A. C. Strasser, E. S. Maniloff, K. M. Johnson, and S. D. D. Goggin, “Procedure for recording multiplex exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14(1), 6 (1989).
[CrossRef] [PubMed]

F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16(8), 605 (1991).
[CrossRef] [PubMed]

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17(20), 1471 (1992).
[CrossRef] [PubMed]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782 (1995).
[CrossRef] [PubMed]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331 (1995).
[CrossRef] [PubMed]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. S. Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244 (1998).
[CrossRef] [PubMed]

K. Peithmann and A. W. K. Buse, ”Incremental recording in lithium niobate with active phase locking,” Opt. Lett. 23(24), 1927 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol. 52(19), 5897–5907 (2007).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography- principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

M. Born, and E. Wolf, VII Theory of interference and interferometers,” in Principles of Optics, (Cambridge University Press, 7th edition, (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

FF-SS OCT setup (BS: beamsplitter, M: mirror, L: lens).

Fig. 2
Fig. 2

Photo (left) and schematic (right) of model sample, consisting of a stack of polished Al-platelets arranged as stairs with each step being 200 µm high. The light is normally incident (indicated by the arrows).

Fig. 3
Fig. 3

Interference pattern recorded with FF-SS-OCT setup.

Fig. 4
Fig. 4

Path lengths of object and reference beam. The arrows show the light incidence.

Fig. 5
Fig. 5

The 4D-data set is resorted. The intensity modulation over wavelength,e.g. at the marked pixel position, is analyzed.

Fig. 6
Fig. 6

The intensity modulation over wavelength at pixel-position (400,300).

Fig. 7
Fig. 7

Reconstructed FF-SS-OCT image (left), drawing of the sample (right).

Fig. 8
Fig. 8

Single-shot setup (BS: beamsplitter, M: mirror, L: lens).

Fig. 9
Fig. 9

Reconstructed hologram, before it interferes with the interference beam.

Fig. 10
Fig. 10

Reconstructed image with sequentially recorded and readout holograms (left). Sample (right).

Fig. 11
Fig. 11

Theoretical (solid line) and experimental (dotted curve) normalized diffraction efficiencyas a function of Bragg mismatch for wavelength multiplexing

Fig. 12
Fig. 12

Interference patterns obtained in one cycle of sequential multiplexing of three holograms. The left hologram is written in 60 s at 819.5 nm. The writing time of the hologram in the middle is set to 50 s, the wavelength being 821.5 nm. The hologram on the right is written in 40 s at a wavelength of 823.5 nm.The marked points can also be found in Fig. (13).

Fig. 13
Fig. 13

Intensity modulation at pixel (400,200). The marked points correspond to themarked points in the interference patterns of Fig. (12).

Fig. 14
Fig. 14

Reconstructed image with three sequentially multiplexed holograms (left). Sample (right).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = 0.44 λ 0 2 Δ z
Δ λ s t e p = λ 0 2 2 h
η B = tan h 2 ( π   Δ n   d λ   cos θ B )
η = η B sin c 2 ( λ B λ Δ λ )
Δ n n = Δ n s a t N

Metrics