Abstract

Transparent glass ceramic containing BaF2:Ho3+,Tm3+ nanocrystals has been prepared by melt quenching and subsequent thermal treatment. The precipitation of BaF2 nanocrystals was confirmed by X-ray diffraction and high-resolution transmission electron microscopy. Intense 2.0 µm fluorescence originating from Ho3+: 5I75I8 transition was achieved upon excitation with 808 nm laser diode. A large ratio of forward Tm3+ → Ho3+ energy transfer constant to that of backward process indicated high efficient energy transfer from Tm3+(3F4) to Ho3+(5I7), benefited from the reduced ionic distances of Tm3+-Tm3+ and Tm3+-Ho3+ pairs and low phonon energy environment with the incorporation of rare-earth ions into the precipitated BaF2 nanocrystals. The results indicate that glass ceramic is a promising candidate material for 2.0 μm laser.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008).
    [CrossRef]
  2. A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
    [CrossRef]
  3. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
    [CrossRef] [PubMed]
  4. C. J. Lee, G. Han, and N. P. Barnes, “Ho:Tm Lasers II: Experiments,” IEEE J. Quantum Electron. 32(1), 104–111 (1996).
    [CrossRef]
  5. R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992).
    [CrossRef]
  6. J. Yu, A. Braud, and M. Petros, “600-mJ, double-pulse 2-μm laser,” Opt. Lett. 28(7), 540–542 (2003).
    [CrossRef] [PubMed]
  7. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 μm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
    [CrossRef] [PubMed]
  8. S. D. Jackson, “8.8W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
    [CrossRef]
  9. D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).
    [CrossRef]
  10. Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005).
    [CrossRef]
  11. Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
    [CrossRef]
  12. D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007).
    [CrossRef]
  13. X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89(11), 111919 (2006).
    [CrossRef]
  14. B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26(3), 145–147 (2001).
    [CrossRef] [PubMed]
  15. M. Mattarelli, V. K. Tikhomirov, A. B. Seddon, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G. C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Solids 345&346, 354–358 (2004).
    [CrossRef]
  16. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3305–3310 (1992).
    [CrossRef]
  17. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
    [CrossRef]
  18. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission crosss sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [CrossRef]
  19. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
    [CrossRef]
  20. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
    [CrossRef]
  21. X. Zou and H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+doubly-doped glasses,” J. Non-Cryst. Solids 195(1-2), 113–124 (1996).
    [CrossRef]
  22. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [CrossRef]
  23. J. H. Song, J. Heo, and S. H. Park, “1.48-μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-Ga-As-S-CsBr glasses,” J. Appl. Phys. 97(8), 083542 (2005).
    [CrossRef]
  24. L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345&346, 349–353 (2004).
    [CrossRef]
  25. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm(3+), Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
    [CrossRef] [PubMed]
  26. L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004).
    [CrossRef]

2008 (2)

O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008).
[CrossRef]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[CrossRef] [PubMed]

2007 (3)

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm(3+), Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
[CrossRef] [PubMed]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007).
[CrossRef]

2006 (2)

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89(11), 111919 (2006).
[CrossRef]

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 μm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
[CrossRef] [PubMed]

2005 (2)

J. H. Song, J. Heo, and S. H. Park, “1.48-μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-Ga-As-S-CsBr glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[CrossRef]

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005).
[CrossRef]

2004 (1)

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004).
[CrossRef]

2003 (1)

2002 (1)

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
[CrossRef]

2001 (2)

B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26(3), 145–147 (2001).
[CrossRef] [PubMed]

S. D. Jackson, “8.8W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
[CrossRef]

1996 (2)

C. J. Lee, G. Han, and N. P. Barnes, “Ho:Tm Lasers II: Experiments,” IEEE J. Quantum Electron. 32(1), 104–111 (1996).
[CrossRef]

X. Zou and H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+doubly-doped glasses,” J. Non-Cryst. Solids 195(1-2), 113–124 (1996).
[CrossRef]

1993 (2)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
[CrossRef]

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
[CrossRef]

1992 (2)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3305–3310 (1992).
[CrossRef]

R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992).
[CrossRef]

1984 (1)

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[CrossRef]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission crosss sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[CrossRef]

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission crosss sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[CrossRef]

Bai, Y.

Barnes, N. P.

C. J. Lee, G. Han, and N. P. Barnes, “Ho:Tm Lasers II: Experiments,” IEEE J. Quantum Electron. 32(1), 104–111 (1996).
[CrossRef]

Bendow, B.

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[CrossRef]

Binks, D.

Borrelli, N. F.

Braud, A.

Buddhudu, S.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005).
[CrossRef]

Chen, D.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007).
[CrossRef]

Chen, S.

da Vila, L. D.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004).
[CrossRef]

Davey, S. T.

R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Fan, X.

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89(11), 111919 (2006).
[CrossRef]

Gomes, L.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004).
[CrossRef]

Han, G.

C. J. Lee, G. Han, and N. P. Barnes, “Ho:Tm Lasers II: Experiments,” IEEE J. Quantum Electron. 32(1), 104–111 (1996).
[CrossRef]

Hanada, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3305–3310 (1992).
[CrossRef]

Heo, J.

J. H. Song, J. Heo, and S. H. Park, “1.48-μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-Ga-As-S-CsBr glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[CrossRef]

Huang, P.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007).
[CrossRef]

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
[CrossRef]

Jackson, S. D.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

S. D. Jackson, “8.8W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
[CrossRef]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission crosss sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[CrossRef]

Jha, A.

Ji, X. H.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005).
[CrossRef]

Jiang, Z. H.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005).
[CrossRef]

Kavaya, M. J.

King, T. A.

R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992).
[CrossRef]

Kuwayama, T.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
[CrossRef]

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

Lee, C. J.

C. J. Lee, G. Han, and N. P. Barnes, “Ho:Tm Lasers II: Experiments,” IEEE J. Quantum Electron. 32(1), 104–111 (1996).
[CrossRef]

Li, T.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005).
[CrossRef]

Louchev, O. A.

O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008).
[CrossRef]

Lousteau, J.

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Messaddeq, Y.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004).
[CrossRef]

Modlin, E. A.

Musha, M.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
[CrossRef]

Ohwaki, J.

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
[CrossRef]

Ohyagi, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3305–3310 (1992).
[CrossRef]

Park, S. H.

J. H. Song, J. Heo, and S. H. Park, “1.48-μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-Ga-As-S-CsBr glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[CrossRef]

Percival, R. M.

R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992).
[CrossRef]

Petros, M.

Petzar, P. J.

Prabhu, M.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
[CrossRef]

Qiao, X.

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89(11), 111919 (2006).
[CrossRef]

Ribeiro, S. J. L.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004).
[CrossRef]

Richards, B.

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

Saito, N.

O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008).
[CrossRef]

Samson, B. N.

Shen, S.

Shirakawa, A.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
[CrossRef]

Sigel, G. H.

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[CrossRef]

Singh, U. N.

Soga, N.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3305–3310 (1992).
[CrossRef]

Song, J. H.

J. H. Song, J. Heo, and S. H. Park, “1.48-μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-Ga-As-S-CsBr glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[CrossRef]

Swain, N. A.

R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992).
[CrossRef]

Szebesta, D.

R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992).
[CrossRef]

Tanabe, S.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3305–3310 (1992).
[CrossRef]

Taniguchi, A.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
[CrossRef]

Tarelho, L. V. G.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004).
[CrossRef]

Tick, P. A.

Toratani, H.

X. Zou and H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+doubly-doped glasses,” J. Non-Cryst. Solids 195(1-2), 113–124 (1996).
[CrossRef]

Tran, D. C.

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[CrossRef]

Trieu, B. C.

Tsang, Y.

Ueda, K.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
[CrossRef]

Urata, Y.

O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008).
[CrossRef]

Wada, S.

O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008).
[CrossRef]

Wang, M.

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89(11), 111919 (2006).
[CrossRef]

Wang, Y.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007).
[CrossRef]

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
[CrossRef]

Yu, J.

Yu, Y.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007).
[CrossRef]

Yumoto, M.

O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008).
[CrossRef]

Zhang, Q. Y.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005).
[CrossRef]

Zou, X.

X. Zou and H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+doubly-doped glasses,” J. Non-Cryst. Solids 195(1-2), 113–124 (1996).
[CrossRef]

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
[CrossRef]

Appl. Phys. Lett. (5)

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002).
[CrossRef]

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005).
[CrossRef]

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007).
[CrossRef]

X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89(11), 111919 (2006).
[CrossRef]

Electron. Lett. (2)

R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992).
[CrossRef]

S. D. Jackson, “8.8W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. J. Lee, G. Han, and N. P. Barnes, “Ho:Tm Lasers II: Experiments,” IEEE J. Quantum Electron. 32(1), 104–111 (1996).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission crosss sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[CrossRef]

J. Appl. Phys. (3)

J. H. Song, J. Heo, and S. H. Park, “1.48-μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-Ga-As-S-CsBr glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[CrossRef]

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004).
[CrossRef]

O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

J. Lightwave Technol. (1)

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).
[CrossRef]

J. Non-Cryst. Solids (2)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
[CrossRef]

X. Zou and H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+doubly-doped glasses,” J. Non-Cryst. Solids 195(1-2), 113–124 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Phys. Rev. B (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3305–3310 (1992).
[CrossRef]

Other (2)

M. Mattarelli, V. K. Tikhomirov, A. B. Seddon, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G. C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Solids 345&346, 354–358 (2004).
[CrossRef]

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345&346, 349–353 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a). XRD patterns of the precursor glass and GC heat-treated at 580°C for 6 h. (b) TEM bright field image and corresponding selected area electron diffraction pattern (left upper side) of the GC. (c) the size distribution of BaF2 nanocrystals embedded in glass matrix. (d) High-resolution TEM image of a BaF2 nanocrystal.

Fig. 2
Fig. 2

(a). Absorption spectra of GC samples doped with 1 mol.% Tm3+ and/or 0.6 mol.% Ho3+. (b) Absorption (solid line) and emission cross sections (dash line) corresponding to the 3H6 - 3F4 transition of Tm3+ and the 5I8 - 5I7 transition of Ho3+ in GC.

Fig. 3
Fig. 3

HoF3 concentration dependence of Tm3+ and Ho3+ fluorescence intensities in SZBTx glass samples under 808 nm excitation. The inset shows the simplified energy level diagram for Tm3+-Ho3+ ions system.

Fig. 4
Fig. 4

(a). Fluorescence spectra of glass and GC co-doped with 0.6 mol.% Ho3+ and 1 mol.% Tm3+ under 808 nm excitation. (b) Calculated gain coefficients corresponding to the 5I8 - 5I7 transition of Ho3+ for the GC sample.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G ( λ ) = N [ p σ e ( λ ) ( 1 p ) σ a ( λ ) ]
C D A = R 0 6 τ 0
R 0 6 = 3 h 4 c 4 Q 64 π 5 n 4 g i ( E ) g j ( E ) E 4 d E

Metrics