Abstract

In high-precision two-photon microfabrication of three-dimensional (3-D) polymeric microstructures, supercritical CO2 drying was employed to reduce surface tension, which tends to cause the collapse of micro/nano structures. Use of supercritical drying allowed high-aspect ratio microstructures, such as micropillars and cantilevers, to be fabricated. We also propose a single-anchor supporting method to eliminate non-uniform shrinkage of polymeric structures otherwise caused by attachment to the substrate. Use of this method permitted frame models such as lattices to be produced without harmful distortion. The combination of supercritical CO2 drying and the single-anchor supporting method offers reliable high-precision microfabrication of sophisticated, fragile 3-D micro/nano structures.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  2. R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
    [CrossRef] [PubMed]
  3. A. Ishikawa, T. Tanaka, and S. Kawata, “Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies,” Appl. Phys. Lett. 91(11), 113118 (2007).
    [CrossRef]
  4. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
    [CrossRef]
  5. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
    [CrossRef]
  6. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  7. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
    [CrossRef]
  8. S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
    [CrossRef]
  9. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  10. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  11. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
    [CrossRef] [PubMed]
  12. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
    [CrossRef]
  13. D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
    [CrossRef]
  14. T. Hasegawa, and S. Maruo, “Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Proc. of Int. Symp. on Micro-nanomechatronics and Human Science (MHS) 2007, 12–15 (2007).
  15. G. L. Weibel and C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing,” Microelectron. Eng. 65(1-2), 145–152 (2003).
    [CrossRef]
  16. C.-J. Kim, J. Y. Kim, and B. Sridharan, “Comparative evaluation of drying techniques for surface micromachining,” Sens. Actuators A Phys. 64(1), 17–26 (1998).
    [CrossRef]
  17. Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
    [CrossRef] [PubMed]
  18. H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
    [CrossRef]
  19. A. Ovsianikov, S. Passinger, R. Houbertz, and B. N. Chichkov, in Laser ablation and its applications, C. Phipps, ed., (Springer Science + Business Media LLC, NY, 2007). Chap. 6, p.145–147.
  20. T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
    [CrossRef]
  21. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
    [CrossRef] [PubMed]
  22. S. Maruo, T. Hasegawa and N. Yoshimura “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys. 48, 06FH05 (2009).
  23. S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
    [CrossRef]

2009 (4)

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[CrossRef]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
[CrossRef]

2008 (3)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[CrossRef]

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
[CrossRef] [PubMed]

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

2007 (5)

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

A. Ishikawa, T. Tanaka, and S. Kawata, “Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies,” Appl. Phys. Lett. 91(11), 113118 (2007).
[CrossRef]

2006 (2)

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

2004 (1)

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

2003 (1)

G. L. Weibel and C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing,” Microelectron. Eng. 65(1-2), 145–152 (2003).
[CrossRef]

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

1998 (1)

C.-J. Kim, J. Y. Kim, and B. Sridharan, “Comparative evaluation of drying techniques for surface micromachining,” Sens. Actuators A Phys. 64(1), 17–26 (1998).
[CrossRef]

1997 (1)

Altun, A. O.

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Barlow, S.

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Chen, V. W.

Chichkov, B. N.

Choi, D.-G.

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Dong, W. T.

Dong, X.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Duan, X.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Farrer, R. A.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Farsari, M.

Fotakis, C.

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[CrossRef]

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gong, Q.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Hales, J. M.

Haske, W.

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Inoue, H.

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies,” Appl. Phys. Lett. 91(11), 113118 (2007).
[CrossRef]

Jeong, J.-H.

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

Kawata, S.

A. Ishikawa, T. Tanaka, and S. Kawata, “Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies,” Appl. Phys. Lett. 91(11), 113118 (2007).
[CrossRef]

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kim, C.-J.

C.-J. Kim, J. Y. Kim, and B. Sridharan, “Comparative evaluation of drying techniques for surface micromachining,” Sens. Actuators A Phys. 64(1), 17–26 (1998).
[CrossRef]

Kim, D. P.

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

Kim, J. Y.

C.-J. Kim, J. Y. Kim, and B. Sridharan, “Comparative evaluation of drying techniques for surface micromachining,” Sens. Actuators A Phys. 64(1), 17–26 (1998).
[CrossRef]

Kim, K.-D.

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

Kim, M.-S.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

Kong, H.-J.

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

LaFratta, C. N.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Lee, E.-S.

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Lee, K. S.

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

Lee, K.-S.

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[CrossRef]

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Li, L. J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Li, Y.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Lim, T. W.

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

Marder, S. R.

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Maruo, S.

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
[CrossRef]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Nakamura, O.

Naughton, M. J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Ober, C. K.

G. L. Weibel and C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing,” Microelectron. Eng. 65(1-2), 145–152 (2003).
[CrossRef]

Ovsianikov, A.

Park, S. H.

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

Park, S.-H.

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[CrossRef]

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

Perry, J. W.

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Pham, T. A.

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

Praino, J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Qi, F.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Qin, J. Q.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Saito, Y.

Saleh, B. E. A.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Shizhou, X.

Son, Y.

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

Sridharan, B.

C.-J. Kim, J. Y. Kim, and B. Sridharan, “Comparative evaluation of drying techniques for surface micromachining,” Sens. Actuators A Phys. 64(1), 17–26 (1998).
[CrossRef]

Sun, H.-B.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Suwa, T.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

Takada, K.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takaura, A.

Tan, D.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Tanaka, T.

A. Ishikawa, T. Tanaka, and S. Kawata, “Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies,” Appl. Phys. Lett. 91(11), 113118 (2007).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Teich, M. C.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Vamvakaki, M.

Weibel, G. L.

G. L. Weibel and C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing,” Microelectron. Eng. 65(1-2), 145–152 (2003).
[CrossRef]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Yang, B. I.

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

Yang, D.-Y.

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[CrossRef]

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

Yang, H.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

Yang, H. K.

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

Yang, S. Y.

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

Yi, S. W.

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

Zaccaria, R. P.

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

Appl. Phys. Lett. (6)

A. Ishikawa, T. Tanaka, and S. Kawata, “Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies,” Appl. Phys. Lett. 91(11), 113118 (2007).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007).
[CrossRef]

D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007).
[CrossRef]

H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[CrossRef]

S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007).
[CrossRef]

Int. J. Appl. Ceram. Technol. (1)

T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Laser Photonics Rev. (2)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[CrossRef]

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[CrossRef]

Microelectron. Eng. (1)

G. L. Weibel and C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing,” Microelectron. Eng. 65(1-2), 145–152 (2003).
[CrossRef]

Nanotechnology (1)

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008).
[CrossRef] [PubMed]

Nature (2)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Science (1)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

C.-J. Kim, J. Y. Kim, and B. Sridharan, “Comparative evaluation of drying techniques for surface micromachining,” Sens. Actuators A Phys. 64(1), 17–26 (1998).
[CrossRef]

Other (3)

A. Ovsianikov, S. Passinger, R. Houbertz, and B. N. Chichkov, in Laser ablation and its applications, C. Phipps, ed., (Springer Science + Business Media LLC, NY, 2007). Chap. 6, p.145–147.

S. Maruo, T. Hasegawa and N. Yoshimura “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys. 48, 06FH05 (2009).

T. Hasegawa, and S. Maruo, “Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Proc. of Int. Symp. on Micro-nanomechatronics and Human Science (MHS) 2007, 12–15 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Micro pillar array produced by natural drying and supercritical CO2 drying. (a) natural drying. (b) supercritical CO2 drying.

Fig. 2
Fig. 2

High-aspect-ratio models. (a) Submicron pillar (diameter: 500 nm, height: 50 µm). (b) submicron cantilever (diameter: 200 nm, length: 40 µm).

Fig. 3
Fig. 3

Cubic frame models. (a), (b) top view and side view of a cubic frame model without anchors. (c), (d) top view and side view of a cubic frame model with a single anchor. (e), (f) top view and side view of a cubic frame model with two anchors.

Fig. 4
Fig. 4

A cubic frame model with a submicron anchor (diameter: 200nm, length 500 nm).

Fig. 5
Fig. 5

Lattice models made from ORMOCOMP. (a) Lattice model without anchors. (b) Lattice model with an anchor.

Fig. 6
Fig. 6

A large lattice model produced by the single-anchor supporting method.

Fig. 7
Fig. 7

Microrotor models produced by the single-anchor supporting method. (a) Microrotor without anchors (b) Microrotor with an anchor.

Metrics