Abstract

A monolithically integrated micro-optical element consisting of a diffractive optical element (DOE) and a silicon-based 45° micro-reflector is experimentally demonstrated to facilitate the optical alignment of non-coplanar fiber-to-fiber coupling. The slanted 45° reflector with a depth of 216 μm is fabricated on a (100) silicon wafer by anisotropic wet etching. The DOE with a diameter of 174.2 μm and a focal length of 150 μm is formed by means of dry etching. Such a compact device is suitable for the optical micro-system to deflect the incident light by 90° and to focus it on the image plane simultaneously. The measured light pattern with a spot size of 15 μm has a good agreement with the simulated result of the elliptic-symmetry DOE with an off-axis design for eliminating the strongly astigmatic aberration. The coupling efficiency is enhanced over 10-folds of the case without a DOE on the 45° micro-reflector. This device would facilitate the optical alignment of non-coplanar light coupling and further miniaturize the volume of microsystem.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B 21(2), 147–156 (1998).
    [CrossRef]
  2. D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
    [CrossRef]
  3. E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).
  4. H. Takahara, “Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 443–451 (2003).
    [CrossRef]
  5. Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol. 21(1), 275–280 (2003).
    [CrossRef]
  6. B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
    [CrossRef]
  7. J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett. 17(1), 214–216 (2005).
    [CrossRef]
  8. M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
    [CrossRef]
  9. V. N. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE Press, 1998), Chap. 3.
  10. H. H. Sasaki, S. S. Takasaki, K. K. Kotani, and T. T. Takamori, “Compact bidirectional photonic circuit employing stacked multilayers of diffractive optical elements for fiber to the home applications,” Proc. SPIE 4437, 108–115 (2001).
    [CrossRef]
  11. I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators A Phys. 84(1–2), 116–125 (2000).
    [CrossRef]
  12. S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Lightwave Technol. 24(2), 927–934 (2006).
    [CrossRef]
  13. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
    [CrossRef]

2006

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Lightwave Technol. 24(2), 927–934 (2006).
[CrossRef]

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

2005

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett. 17(1), 214–216 (2005).
[CrossRef]

2004

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
[CrossRef]

2003

H. Takahara, “Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 443–451 (2003).
[CrossRef]

Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol. 21(1), 275–280 (2003).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
[CrossRef]

2001

H. H. Sasaki, S. S. Takasaki, K. K. Kotani, and T. T. Takamori, “Compact bidirectional photonic circuit employing stacked multilayers of diffractive optical elements for fiber to the home applications,” Proc. SPIE 4437, 108–115 (2001).
[CrossRef]

2000

I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators A Phys. 84(1–2), 116–125 (2000).
[CrossRef]

1998

H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B 21(2), 147–156 (1998).
[CrossRef]

Althaus, H. L.

H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B 21(2), 147–156 (1998).
[CrossRef]

Aoyama, K.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

Barkai, A.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Barnett, B.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Braunisch, H.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Chang, J. Y.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett. 17(1), 214–216 (2005).
[CrossRef]

Cho, H. S.

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
[CrossRef]

Cohen, O.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Cohen, R.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Gramann, W.

H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B 21(2), 147–156 (1998).
[CrossRef]

Ha, S. W.

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
[CrossRef]

Heck, J.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Hiramatsu, S.

S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Lightwave Technol. 24(2), 927–934 (2006).
[CrossRef]

Ishii, Y.

Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol. 21(1), 275–280 (2003).
[CrossRef]

Izhaky, N.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Kang, S.

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
[CrossRef]

Koehl, S.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Kotani, K.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
[CrossRef]

Kotani, K. K.

H. H. Sasaki, S. S. Takasaki, K. K. Kotani, and T. T. Takamori, “Compact bidirectional photonic circuit employing stacked multilayers of diffractive optical elements for fiber to the home applications,” Proc. SPIE 4437, 108–115 (2001).
[CrossRef]

Lee, C. C.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett. 17(1), 214–216 (2005).
[CrossRef]

Liu, A.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Lu, D.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Maeno, Y.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
[CrossRef]

Masuko, K.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

Mikawa, T.

S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Lightwave Technol. 24(2), 927–934 (2006).
[CrossRef]

Mohammed, E.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Mooney, R.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Morse, M. T.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Nakaya, S.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

Paniccia, M. J.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Panzer, K.

H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B 21(2), 147–156 (1998).
[CrossRef]

Park, H. H.

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
[CrossRef]

Rhee, B. H.

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
[CrossRef]

Rho, B. S.

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
[CrossRef]

Rubin, D.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Sakamoto, T.

Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol. 21(1), 275–280 (2003).
[CrossRef]

Sarid, G.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Sasaki, H.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
[CrossRef]

Sasaki, H. H.

H. H. Sasaki, S. S. Takasaki, K. K. Kotani, and T. T. Takamori, “Compact bidirectional photonic circuit employing stacked multilayers of diffractive optical elements for fiber to the home applications,” Proc. SPIE 4437, 108–115 (2001).
[CrossRef]

Sekikawa, R.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

Shih, H. F.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett. 17(1), 214–216 (2005).
[CrossRef]

Shimura, D.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
[CrossRef]

Takahara, H.

Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol. 21(1), 275–280 (2003).
[CrossRef]

H. Takahara, “Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 443–451 (2003).
[CrossRef]

Takamori, T.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
[CrossRef]

Takamori, T. T.

H. H. Sasaki, S. S. Takasaki, K. K. Kotani, and T. T. Takamori, “Compact bidirectional photonic circuit employing stacked multilayers of diffractive optical elements for fiber to the home applications,” Proc. SPIE 4437, 108–115 (2001).
[CrossRef]

Takasaki, S. S.

H. H. Sasaki, S. S. Takasaki, K. K. Kotani, and T. T. Takamori, “Compact bidirectional photonic circuit employing stacked multilayers of diffractive optical elements for fiber to the home applications,” Proc. SPIE 4437, 108–115 (2001).
[CrossRef]

Tanaka, N.

Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol. 21(1), 275–280 (2003).
[CrossRef]

Thomas, T.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Uekawa, M.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
[CrossRef]

Vandentop, G.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Wang, C. M.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett. 17(1), 214–216 (2005).
[CrossRef]

Wu, M. L.

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett. 17(1), 214–216 (2005).
[CrossRef]

Young, I.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Zubel, I.

I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators A Phys. 84(1–2), 116–125 (2000).
[CrossRef]

IEEE J. Lightwave Technol.

Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol. 21(1), 275–280 (2003).
[CrossRef]

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004).
[CrossRef]

S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Lightwave Technol. 24(2), 927–934 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of cmos-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

H. Takahara, “Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 443–451 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett. 18(16), 1738–1740 (2006).
[CrossRef]

J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett. 17(1), 214–216 (2005).
[CrossRef]

M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett. 15(7), 945–947 (2003).
[CrossRef]

IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B

H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B 21(2), 147–156 (1998).
[CrossRef]

Intel Technol. J.

E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8(2), 115–128 (2004).

Proc. SPIE

H. H. Sasaki, S. S. Takasaki, K. K. Kotani, and T. T. Takamori, “Compact bidirectional photonic circuit employing stacked multilayers of diffractive optical elements for fiber to the home applications,” Proc. SPIE 4437, 108–115 (2001).
[CrossRef]

Sens. Actuators A Phys.

I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators A Phys. 84(1–2), 116–125 (2000).
[CrossRef]

Other

V. N. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE Press, 1998), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of non-coplanar optical configurations on SiOB. (a) Conventional type with hybrid integration of a micro-lens, micro-prism, and si-submount [1]. (b) Our proposed type with monolithic integration of the DOE on a si-based 45° micro-reflector. The DOE directly etched on the slant can deflect and focus light simultaneously.

Fig. 2
Fig. 2

Tangential (y) and sagittal (x) ray fan plots for the designed DOE on a 45° micro-reflector. The horizontal and vertical axes indicate the relative pupil height and the transverse ray aberrations scaled in micrometers, respectively.

Fig. 3
Fig. 3

Simulated coupling efficiency versus transverse displacements in both the tangential and sagittal direction, where 1dB-degradation tolerance is about ± 1.6 μm.

Fig. 4
Fig. 4

Elliptic-symmetry profile of the designed DOE. Its major (y) and minor (x) diameters are 174.2 and 123.2 μm, respectively, and its minimum line width is 0.71 μm.

Fig. 5
Fig. 5

(a) The side-view profile of the silicon-based 45° micro-reflector by scanning probe microscopy. The inset is the AFM measurement of the surface profile. (b) The SEM picture of the elliptic-symmetry DOE fabricated on a silicon-based 45° micro-reflector.

Fig. 6
Fig. 6

The measured beam patterns at the image planes with different working distance of 280, 300, and 320 μm. The spot size at the best focus position is approximately 15 μm.

Fig. 7
Fig. 7

Normalized coupling efficiency versus transverse displacements for comparison between the experimental and simulation results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ ( x , y ) = 135.25 x 2 68.78 y 2 ,

Metrics