Abstract

We demonstrate active pulse shaping using an Electro-Optic Modulator in order to compensate the pulse shaping effects caused by Gain Saturation in a high power Yb doped fiber amplifier chain and to generate various custom-defined output pulse shapes. Square, step and smooth pulse shapes are achieved, with mJ pulse energies. Use of a modulator to shape pulses rather than direct modulation of the diode drive current allows us to eliminate undesired transients due to laser start up dynamics. The required shaping is calculated based on a simple measurement of amplifier performance, and does not require detailed modeling of the amplifier dynamics.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Desthieux, R. I. Laming, and D. N. Payne, “111 kW (0.5 mJ) pulse amplification at 1.5 µm using a gated cascade of three erbium-doped fiber amplifiers,” Appl. Phys. Lett. 63(5), 586–588 (1993).
    [CrossRef]
  2. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-microJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22(6), 378–380 (1997).
    [CrossRef] [PubMed]
  3. S. A. Guskov, S. V. Popov, S. Chernikov, and J. R. Taylor, “Second harmonic generation around 0.53 μm of seeded Yb fibre system in periodically-poled lithium niobate,” Electron. Lett. 34(14), 1419–1420 (1998).
    [CrossRef]
  4. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
    [CrossRef]
  5. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
    [CrossRef] [PubMed]
  6. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [CrossRef]
  7. L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
    [CrossRef]
  8. Y. Wang and H. Po, “Dynamic Characteristics of Double-Clad Fiber Amplifiers for High-Power Pulse Amplification,” J. Lightwave Technol. 21(10), 2262–2270 (2003).
    [CrossRef]
  9. W. Williams, C. Orth, R. Sacks, J. Lawson, K. Jancaitis, J. Trenholme, S. Haney, J. Auerbach, M. Henesian, and P. Renard, “NIF Design Optimization,” in Inertial Confinement Fusion Annual Report, (Lawrence Livermore National Laboratory, 1996) p. 184.
  10. M. Shaw, W. Williams, R. House, and C. Haynam, “Laser Performance Operations Model (LPOM),” in Inertial Confinement Fusion Semiannual Report (Lawrence Livermore National Laboratory, 2004).
  11. W. Shaikh, I. O. Musgrave, A. S. Bhamra, and C. Hernandez-Gomez, “Development of an amplified variable shaped long pulse system for Vulcan,” in Central Laser Facility Annual Report (CCLRC Rutherford Appleton Laboratory, 2005/2006) p. 199.
  12. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
    [CrossRef] [PubMed]
  13. D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16(22), 17637–17646 (2008).
    [CrossRef] [PubMed]
  14. A. E. Siegman, Lasers, (University Science Books, Sausalito, CA, 1986).
  15. E. Lichtman, A. A. Friesem, R. G. Waarts, and H. H. Yaffe, “Stimulated Brillouin-Scattering Excited By 2 Pump Waves In Single-Mode Fibers,” J. Opt. Soc. Am. B 4(9), 1397–1403 (1987).
    [CrossRef]
  16. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11(11), 2489 (1972).
    [CrossRef] [PubMed]
  17. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [CrossRef] [PubMed]
  18. C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
    [CrossRef] [PubMed]
  19. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

2006 (3)

2003 (1)

1998 (1)

S. A. Guskov, S. V. Popov, S. Chernikov, and J. R. Taylor, “Second harmonic generation around 0.53 μm of seeded Yb fibre system in periodically-poled lithium niobate,” Electron. Lett. 34(14), 1419–1420 (1998).
[CrossRef]

1997 (2)

1993 (1)

B. Desthieux, R. I. Laming, and D. N. Payne, “111 kW (0.5 mJ) pulse amplification at 1.5 µm using a gated cascade of three erbium-doped fiber amplifiers,” Appl. Phys. Lett. 63(5), 586–588 (1993).
[CrossRef]

1987 (1)

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

1972 (1)

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[CrossRef]

Barty, C. P.

Beach, R. J.

Caplen, J. E.

Chernikov, S.

S. A. Guskov, S. V. Popov, S. Chernikov, and J. R. Taylor, “Second harmonic generation around 0.53 μm of seeded Yb fibre system in periodically-poled lithium niobate,” Electron. Lett. 34(14), 1419–1420 (1998).
[CrossRef]

Dawson, J. W.

Desthieux, B.

B. Desthieux, R. I. Laming, and D. N. Payne, “111 kW (0.5 mJ) pulse amplification at 1.5 µm using a gated cascade of three erbium-doped fiber amplifiers,” Appl. Phys. Lett. 63(5), 586–588 (1993).
[CrossRef]

Dong, L.

Dupriez, P.

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[CrossRef] [PubMed]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Finot, C.

Foreman, H. D.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[CrossRef]

Friesem, A. A.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Ghiringhelli, F.

Guskov, S. A.

S. A. Guskov, S. V. Popov, S. Chernikov, and J. R. Taylor, “Second harmonic generation around 0.53 μm of seeded Yb fibre system in periodically-poled lithium niobate,” Electron. Lett. 34(14), 1419–1420 (1998).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Heebner, J. E.

Hickey, L. M. B.

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
[CrossRef] [PubMed]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Ibsen, M.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Jauregui, C.

Jeong, Y.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Laming, R. I.

B. Desthieux, R. I. Laming, and D. N. Payne, “111 kW (0.5 mJ) pulse amplification at 1.5 µm using a gated cascade of three erbium-doped fiber amplifiers,” Appl. Phys. Lett. 63(5), 586–588 (1993).
[CrossRef]

Lichtman, E.

Limpert, J.

Malinowski, A.

Messerly, M. J.

Nilsson, J.

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[CrossRef] [PubMed]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Nodop, D.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Pax, P. H.

Payne, D. N.

B. Desthieux, R. I. Laming, and D. N. Payne, “111 kW (0.5 mJ) pulse amplification at 1.5 µm using a gated cascade of three erbium-doped fiber amplifiers,” Appl. Phys. Lett. 63(5), 586–588 (1993).
[CrossRef]

Penty, R. V.

Piper, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Po, H.

Popov, S. V.

S. A. Guskov, S. V. Popov, S. Chernikov, and J. R. Taylor, “Second harmonic generation around 0.53 μm of seeded Yb fibre system in periodically-poled lithium niobate,” Electron. Lett. 34(14), 1419–1420 (1998).
[CrossRef]

Richardson, D. J.

Ruchert, C.

Sahu, J. K.

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[CrossRef] [PubMed]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Salin, F.

Schimpf, D. N.

Shverdin, M. Y.

Siders, C. W.

Smith, R. G.

Sridharan, A. K.

Stappaerts, E. A.

Taverner, D.

Taylor, J. R.

S. A. Guskov, S. V. Popov, S. Chernikov, and J. R. Taylor, “Second harmonic generation around 0.53 μm of seeded Yb fibre system in periodically-poled lithium niobate,” Electron. Lett. 34(14), 1419–1420 (1998).
[CrossRef]

Thomsen, B. C.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Tropper, A. C.

Tünnermann, A.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Vu, K. T.

Waarts, R. G.

Wang, Y.

Wilcox, K. G.

Williams, K.

Yaffe, H. H.

Zervas, M. N.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. Desthieux, R. I. Laming, and D. N. Payne, “111 kW (0.5 mJ) pulse amplification at 1.5 µm using a gated cascade of three erbium-doped fiber amplifiers,” Appl. Phys. Lett. 63(5), 586–588 (1993).
[CrossRef]

Electron. Lett. (1)

S. A. Guskov, S. V. Popov, S. Chernikov, and J. R. Taylor, “Second harmonic generation around 0.53 μm of seeded Yb fibre system in periodically-poled lithium niobate,” Electron. Lett. 34(14), 1419–1420 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (1)

Science (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Other (4)

A. E. Siegman, Lasers, (University Science Books, Sausalito, CA, 1986).

W. Williams, C. Orth, R. Sacks, J. Lawson, K. Jancaitis, J. Trenholme, S. Haney, J. Auerbach, M. Henesian, and P. Renard, “NIF Design Optimization,” in Inertial Confinement Fusion Annual Report, (Lawrence Livermore National Laboratory, 1996) p. 184.

M. Shaw, W. Williams, R. House, and C. Haynam, “Laser Performance Operations Model (LPOM),” in Inertial Confinement Fusion Semiannual Report (Lawrence Livermore National Laboratory, 2004).

W. Shaikh, I. O. Musgrave, A. S. Bhamra, and C. Hernandez-Gomez, “Development of an amplified variable shaped long pulse system for Vulcan,” in Central Laser Facility Annual Report (CCLRC Rutherford Appleton Laboratory, 2005/2006) p. 199.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of active pulse shaping system with EOM

Fig. 2
Fig. 2

(a) MOPA output power curve and (b) output spectrum (resolution 0.5 nm) at 200W and 1% duty cycle

Fig. 3
Fig. 3

(a) Input pulses to generate a square 100ns output pulse, produced by direct calculation or iterative method, (b) Square output pulses with 100 and 200 ns pulse durations.

Fig. 4
Fig. 4

Square pulses generated via modulating diode current or modulating EOM

Fig. 5
Fig. 5

Two-step pulse shape with (a) low duty cycle, (b) high duty cycle

Fig. 6
Fig. 6

(a) Input pulses and (b) output pulses obtained by various methods with a targeted parabolic pulse shape

Fig. 7
Fig. 7

(a) Input pulses and (b) output pulses obtained by various methods with a targeted Gaussian pulse shape

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ^ ( z ^ , t ^ ) t ^ + c I ^ ( z ^ , t ^ ) z ^ = σ c N ^ ( z ^ , t ^ ) I ^ ( z ^ , t ^ )
t ^ Δ N ^ ( z ^ , t ^ ) = ( 2 * σ ω ) N ^ ( z ^ , t ^ ) I ^ ( z ^ , t ^ )
I ( z , t ) z = σ N ( z , t ) I ( z , t )
N ( z , t ) t ^ = ( 2 * σ ω ) N ( z , t ) I ( z , t )
I o u t ( t ) = I i n ( t ) e σ N t o t ( t ) = G ( t ) I i n ( t )
d N t o t ( t ) d t = 2 * ω [ I o u t ( t ) I i n ( t ) ]
N t o t ( t ) z = 0 z = L N ( z , t ) d z      and      G ( t ) e σ N t o t ( t )
I o u t ( t ) = I ( t ) i n G ( t )
G ( t ) = 1 + ( G 0 1 ) e U o u t ( t ) / U s a t
G ( t ) = 1 + ( G 0 1 ) e E o u t ( t ) / E s a t
I i n ( t ) = I o u t ( t ) 1 + ( G 0 1 ) e E o u t ( t ) / E s a t

Metrics