Abstract

Based on enhanced upconversion, we demonstrate a highly efficient method for converting a full image from one part of the electromagnetic spectrum into a new desired wavelength region. By illuminating a metal transmission mask with a 765 nm Gaussian beam to create an image and subsequently focusing the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high efficiency mid-infrared image upconversion where direct and fast detection is difficult or impossible to perform with existing detector technologies.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Andrews, “Wide angular aperture image up-conversion,” J. Quantum Electron. 5(11), 548–550 (1969).
    [CrossRef]
  2. A. H. Firester, “Image upconversion: Part III*,” J. Appl. Phys. 41(2), 703–709 (1970).
    [CrossRef]
  3. W. Chiou, “Geometric Optics Theory of Parametric Image Upconversion,” J. Appl. Phys. 42(5), 1985–1993 (1971).
    [CrossRef]
  4. J. Falk and Y. C. See, “Internal CW parametric upconversion,” Appl. Phys. Lett. 32(2), 100–101 (1978).
    [CrossRef]
  5. J. E. Midwinter, “Infrared up conversion in lithium-niobate with large bandwidth and solid acceptance angle,” Appl. Phys. Lett. 14(1), 29–32 (1969).
    [CrossRef]
  6. S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric up converter,” J. Appl. Phys. 51(1), 50–60 (1980).
    [CrossRef]
  7. F. Devaux, A. Mosset, E. Lantz, S. Monneret, and H. Le Gall, “Image upconversion from the visible to the UV domain: application to dynamic UV microstereolithography,” Appl. Opt. 40(28), 4953–4957 (2001), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-28-4953 .
    [CrossRef] [PubMed]
  8. E. Karamehmedović, C. Pedersen, M. T. Andersen, and P. Tidemand-Lichtenberg, “Efficient visible light generation by mixing of a solid-state laser and a tapered diode laser,” Opt. Express 15(19), 12240–12245 (2007), http://www.opticsinfobase.org/abstract.cfm?id=141313 .
    [CrossRef] [PubMed]
  9. E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, “Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing,” Appl. Phys. B 96(2-3), 409–413 (2009).
    [CrossRef]
  10. D. J. Stothard, M. H. Dunn, and C. F. Rae, “Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator,” Opt. Express 12(5), 947–955 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-5-947 .
    [CrossRef] [PubMed]
  11. J. W. Goodman, “Introduction to Fourier Optics” (Third edition), Robers & Company Publishers (2005).
  12. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light beams,” J. Appl. Phys. 39(8), 3597–3640 (1968).
    [CrossRef]

2009 (1)

E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, “Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing,” Appl. Phys. B 96(2-3), 409–413 (2009).
[CrossRef]

2007 (1)

2004 (1)

2001 (1)

1980 (1)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric up converter,” J. Appl. Phys. 51(1), 50–60 (1980).
[CrossRef]

1978 (1)

J. Falk and Y. C. See, “Internal CW parametric upconversion,” Appl. Phys. Lett. 32(2), 100–101 (1978).
[CrossRef]

1971 (1)

W. Chiou, “Geometric Optics Theory of Parametric Image Upconversion,” J. Appl. Phys. 42(5), 1985–1993 (1971).
[CrossRef]

1970 (1)

A. H. Firester, “Image upconversion: Part III*,” J. Appl. Phys. 41(2), 703–709 (1970).
[CrossRef]

1969 (2)

R. A. Andrews, “Wide angular aperture image up-conversion,” J. Quantum Electron. 5(11), 548–550 (1969).
[CrossRef]

J. E. Midwinter, “Infrared up conversion in lithium-niobate with large bandwidth and solid acceptance angle,” Appl. Phys. Lett. 14(1), 29–32 (1969).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light beams,” J. Appl. Phys. 39(8), 3597–3640 (1968).
[CrossRef]

Andersen, M. T.

Andrews, R. A.

R. A. Andrews, “Wide angular aperture image up-conversion,” J. Quantum Electron. 5(11), 548–550 (1969).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light beams,” J. Appl. Phys. 39(8), 3597–3640 (1968).
[CrossRef]

Chiou, W.

W. Chiou, “Geometric Optics Theory of Parametric Image Upconversion,” J. Appl. Phys. 42(5), 1985–1993 (1971).
[CrossRef]

Devaux, F.

Dunn, M. H.

Falk, J.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric up converter,” J. Appl. Phys. 51(1), 50–60 (1980).
[CrossRef]

J. Falk and Y. C. See, “Internal CW parametric upconversion,” Appl. Phys. Lett. 32(2), 100–101 (1978).
[CrossRef]

Firester, A. H.

A. H. Firester, “Image upconversion: Part III*,” J. Appl. Phys. 41(2), 703–709 (1970).
[CrossRef]

Guha, S.

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric up converter,” J. Appl. Phys. 51(1), 50–60 (1980).
[CrossRef]

Jensen, O. B.

E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, “Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing,” Appl. Phys. B 96(2-3), 409–413 (2009).
[CrossRef]

Karamehmedovic, E.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light beams,” J. Appl. Phys. 39(8), 3597–3640 (1968).
[CrossRef]

Lantz, E.

Le Gall, H.

Midwinter, J. E.

J. E. Midwinter, “Infrared up conversion in lithium-niobate with large bandwidth and solid acceptance angle,” Appl. Phys. Lett. 14(1), 29–32 (1969).
[CrossRef]

Monneret, S.

Mosset, A.

Pedersen, C.

Rae, C. F.

See, Y. C.

J. Falk and Y. C. See, “Internal CW parametric upconversion,” Appl. Phys. Lett. 32(2), 100–101 (1978).
[CrossRef]

Stothard, D. J.

Tidemand-Lichtenberg, P.

Appl. Opt. (1)

Appl. Phys. B (1)

E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, “Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing,” Appl. Phys. B 96(2-3), 409–413 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

J. Falk and Y. C. See, “Internal CW parametric upconversion,” Appl. Phys. Lett. 32(2), 100–101 (1978).
[CrossRef]

J. E. Midwinter, “Infrared up conversion in lithium-niobate with large bandwidth and solid acceptance angle,” Appl. Phys. Lett. 14(1), 29–32 (1969).
[CrossRef]

J. Appl. Phys. (4)

S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric up converter,” J. Appl. Phys. 51(1), 50–60 (1980).
[CrossRef]

A. H. Firester, “Image upconversion: Part III*,” J. Appl. Phys. 41(2), 703–709 (1970).
[CrossRef]

W. Chiou, “Geometric Optics Theory of Parametric Image Upconversion,” J. Appl. Phys. 42(5), 1985–1993 (1971).
[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light beams,” J. Appl. Phys. 39(8), 3597–3640 (1968).
[CrossRef]

J. Quantum Electron. (1)

R. A. Andrews, “Wide angular aperture image up-conversion,” J. Quantum Electron. 5(11), 548–550 (1969).
[CrossRef]

Opt. Express (2)

Other (1)

J. W. Goodman, “Introduction to Fourier Optics” (Third edition), Robers & Company Publishers (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The system under consideration; An object field is focussed to the Fourier plane inside a nonlinear crystal where it interacts with the Gaussian intra-cavity field of a diode-pumped solid-state laser to generate an upconverted field at the image plane.

Fig. 2
Fig. 2

Schematic of the experimental setup. The 765 nm beam from a ECDL is masked and single-passed through a PPKTP crystal placed in the beam-waist of a high-finesse 1342 nm laser for efficient SFG of the image into the blue spectral region.

Fig. 3
Fig. 3

(a) Transmission mask positioned at the object plane. (b) Direct image of the 765 nm coherently illuminated mask. (c) Theoretically calculated 488 nm light distribution at image plane (based on image b). (d) Measured 488 nm upconverted cross at the image plane. Images (b)-(d) have been colored to reflect the color of the light creating the patterns.

Fig. 4
Fig. 4

Theoretical and experimental examples of offset beams inside the non-linear crystal. (a) Theoretical upconverted image arising from a beam displacement of 83 µm (1.9 w0 ) along x-axis (idealized crosshair). (b) Same as (a) but calculated from Fig. 3(b). (c) Experimentally obtained upconverted image corresponding to image (b). (d) Calculation of the upconverted beam with displacement along the x-y axes based on Fig. 3(b). (e) Experimentally obtained upconverted image corresponding to image (d).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E u p ( x , y ) = j 2 π d e f f L λ 1 f n 3 f 1 λ 3 2 w 0 4 P G a u s s π n 2 ε 0 c E o b j e c t ( λ 1 f λ 3 f 1 x , λ 1 f λ 3 f 1 y ) ( π w 0 2 λ 3 2 f 1 2 e x 2 + y 2 ( λ 3 f 1 π w 0 ) 2 )
I u p ( x , y ) = 8 π d e f f 2 f 2 λ 1 2 L 2 n 2 n 3 f 1 2 λ 3 4 w 0 2 P G a u s s | E o b j e c t ( λ 1 f λ 3 f 1 x , λ 1 f λ 3 f 1 y ) ( π w 0 2 λ 3 2 f 1 2 e x 2 + y 2 ( λ 3 f 1 π w 0 ) 2 ) | 2
I u p ( x , y ) = 16 π d e f f 2 f 2 λ 1 2 L 2 n 1 n 2 n 3 c ε 0 f 1 2 λ 3 4 w 0 2 P G a u s s I o b j e c t ( λ 1 f λ 3 f 1 x , λ 1 f λ 3 f 1 y )
P ( x , y , x 0 , y 0 ) = j 2 π 2 d e f f L w 0 n 3 f λ 1 f 1 λ 3 2 4 P G a u s s π n 2 ε 0 c e ( x x 0 ) 2 + ( y y 0 ) 2 ( λ 3 f 1 π w 0 ) 2

Metrics