Abstract

We demonstrate a dual-operation-mode liquid crystal (LC) lens, which is fabricated with the silica nanoparticle-doped (SND) hybrid-aligned nematic (HAN) LC cell. With AC voltage, the cell behaves as a conventional LC lens. The response time of the SND HAN LC lens is faster than that of the conventional LC lens, which is fabricated using the pristine HAN LC cell. This is because that the doped silica nanoparticles may decrease the dielectric relaxation time constant of the cell. The addition of the silica nanoparticles also increases the viscosity of the LC host, suppresses the backflow motion of the LCs and then decreases the response time of the SND LC lens. With DC voltage, the electrophoretic motion of the doped silica nanoparticles and the agglomerate silica networks on the substrate surface cause the SND HAN LC cell to function as a bistable LC lens.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22 (2003).
    [CrossRef]
  2. A. K. Kirby, P. J. W. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15(21), 13496–13501 (2007).
    [CrossRef] [PubMed]
  3. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
    [CrossRef] [PubMed]
  4. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any aize,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
    [CrossRef]
  5. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004).
    [CrossRef]
  6. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
    [CrossRef]
  7. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
    [CrossRef] [PubMed]
  8. G. P. Crawford, and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor and Francis, London, 1996).
  9. A. V. Zakharov and J. Thoen, “Effect of silica aerosils on the nematic to isotropic transition: A theoretical treatment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(), 011704 (2004).
    [CrossRef] [PubMed]
  10. A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
    [CrossRef] [PubMed]
  11. M. Kreuzer, T. Tschudi, W. H. de Jeu, and R. Eidenschink, “New liquid crystal display with bistability and selective erasure using scattering in filled nematics,” Appl. Phys. Lett. 62(15), 1712 (1993).
    [CrossRef]
  12. D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
    [CrossRef]
  13. C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
    [CrossRef]
  14. Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
    [CrossRef]
  15. H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
    [CrossRef]

2008 (2)

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (1)

D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[CrossRef]

2004 (3)

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004).
[CrossRef]

A. V. Zakharov and J. Thoen, “Effect of silica aerosils on the nematic to isotropic transition: A theoretical treatment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(), 011704 (2004).
[CrossRef] [PubMed]

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

2003 (1)

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22 (2003).
[CrossRef]

2002 (3)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any aize,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
[CrossRef]

2001 (1)

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

1993 (1)

M. Kreuzer, T. Tschudi, W. H. de Jeu, and R. Eidenschink, “New liquid crystal display with bistability and selective erasure using scattering in filled nematics,” Appl. Phys. Lett. 62(15), 1712 (1993).
[CrossRef]

Bose, T. K.

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

Chang, C. A.

Cheng, C. C.

de Jeu, W. H.

M. Kreuzer, T. Tschudi, W. H. de Jeu, and R. Eidenschink, “New liquid crystal display with bistability and selective erasure using scattering in filled nematics,” Appl. Phys. Lett. 62(15), 1712 (1993).
[CrossRef]

Eidenschink, R.

M. Kreuzer, T. Tschudi, W. H. de Jeu, and R. Eidenschink, “New liquid crystal display with bistability and selective erasure using scattering in filled nematics,” Appl. Phys. Lett. 62(15), 1712 (1993).
[CrossRef]

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004).
[CrossRef]

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004).
[CrossRef]

Hands, P. J. W.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Hourri, A.

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

Huang, C. Y.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Kirby, A. K.

Kobayashi, S.

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
[CrossRef]

Kreuzer, M.

M. Kreuzer, T. Tschudi, W. H. de Jeu, and R. Eidenschink, “New liquid crystal display with bistability and selective erasure using scattering in filled nematics,” Appl. Phys. Lett. 62(15), 1712 (1993).
[CrossRef]

Kundu, S.

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

Lai, C. C.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Lo, K. Y.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Love, G. D.

Maeda, K.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
[CrossRef]

Masumi, T.

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Ren, H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22 (2003).
[CrossRef]

Sakai, Y.

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

Sato, S.

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any aize,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

Shiraishi, Y.

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
[CrossRef]

Shiraki, H.

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

Sikharulidze, D.

D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[CrossRef]

Thoen, J.

A. V. Zakharov and J. Thoen, “Effect of silica aerosils on the nematic to isotropic transition: A theoretical treatment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(), 011704 (2004).
[CrossRef] [PubMed]

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

Tien, C. J.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Toshima, N.

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
[CrossRef]

Tschudi, T.

M. Kreuzer, T. Tschudi, W. H. de Jeu, and R. Eidenschink, “New liquid crystal display with bistability and selective erasure using scattering in filled nematics,” Appl. Phys. Lett. 62(15), 1712 (1993).
[CrossRef]

Tseng, Y. H.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Wang, B.

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Wu, S. T.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22 (2003).
[CrossRef]

Xu, J.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
[CrossRef]

Yang, Y. T.

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Ye, M.

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any aize,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

Yeh, J. A.

Yoshikawa, H.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
[CrossRef]

Zakharov, A. V.

A. V. Zakharov and J. Thoen, “Effect of silica aerosils on the nematic to isotropic transition: A theoretical treatment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(), 011704 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

M. Kreuzer, T. Tschudi, W. H. de Jeu, and R. Eidenschink, “New liquid crystal display with bistability and selective erasure using scattering in filled nematics,” Appl. Phys. Lett. 62(15), 1712 (1993).
[CrossRef]

D. Sikharulidze, “Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86(3), 033507 (2005).
[CrossRef]

C. Y. Huang, C. C. Lai, Y. H. Tseng, Y. T. Yang, C. J. Tien, and K. Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92(22), 221908 (2008).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845 (2002).
[CrossRef]

H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (4)

H. Shiraki, S. Kundu, Y. Sakai, T. Masumi, Y. Shiraishi, N. Toshima, and S. Kobayashi, “Dielectric properties of frequency modulation twisted nematic LCDs doped with Palladium (Pd) nanoparticles,” Jpn. J. Appl. Phys. 43(No. 8A), 5425–5429 (2004).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any aize,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Opt. Express (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

A. V. Zakharov and J. Thoen, “Effect of silica aerosils on the nematic to isotropic transition: A theoretical treatment,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(), 011704 (2004).
[CrossRef] [PubMed]

A. Hourri, T. K. Bose, and J. Thoen, “Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 051702 (2001).
[CrossRef] [PubMed]

Other (1)

G. P. Crawford, and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor and Francis, London, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic demonstration of the dual-operation-mode HAN LC lens with (a) DC voltage-pulse, and (b) AC voltage-pulse.

Fig. 2
Fig. 2

Images of the incident polarized light through the 1 wt% SND HAN LC lens: (a) initially un-focused image with zero voltage; (b) focused image with 160 V AC voltage; (c) un-focused image after turning off the 160 V AC voltage.

Fig. 3
Fig. 3

Measured focal lengths of the 1 wt% SND HAN LC lens at various AC voltages.

Fig. 4
Fig. 4

Measured optical response curves of the pristine HAN LC lens and the 1 wt% SND HAN LC lens with 100 V AC voltage-pulse excitation.

Fig. 5
Fig. 5

Images of the incident light through the 1 wt% SND HAN LC lens: (a) initially un-focused image with zero voltage; (b) focused image with + 160 V DC voltage, (c) focused image after turning off the + 160 V DC voltage (memory state); (d) focused image with 160 V, 1 kHz AC voltage; (e) focused image after turning off the 160 V, 1 kHz AC voltage (memory state).

Fig. 6
Fig. 6

Images of the incident light through the SND HAN LC lens: (a) with – 160 V DC voltage; (b) after turning off the – 160 V DC voltage; (c) with 160 V, 10 Hz AC voltage; (d) after turning off the 160 V, 10 Hz AC voltage.

Metrics